- 博客(1121)
- 资源 (18)
- 问答 (2)
- 收藏
- 关注
原创 Kingbase 设计上就不提供实时准确行数
摘要: Kingbase(基于PostgreSQL)设计上不提供实时准确行数,这是MVCC架构的必然选择。系统表reltuples仅为优化器估算值,非真实数据。与MySQL/Oracle类似,它们的"行数"也是近似值。工程上应明确区分估算行数(rows_estimated)和精确行数(需COUNT(*)),避免错误方案。该设计是数据库在一致性、性能和并发间的权衡,而非缺陷。核心结论:精确行数必须通过COUNT获取,系统表无法替代。
2026-01-19 18:05:22
339
原创 Dify 组件定义
摘要:Dify中的组件实际上是Tool(API声明)和Workflow节点的组合,而非可执行代码。用户需通过OpenAPI定义Tool,并在外部服务中实现实际逻辑。Dify仅作为编排器,通过HTTP调用外部服务,所有状态和业务逻辑需在独立部署的Adapter Service中处理。典型架构应包括参数校验、错误处理和数据路由,避免直接暴露数据库连接。正确部署方式是在Dify外独立运行服务,而非将其嵌入Dify。
2026-01-16 13:47:21
661
原创 图表绘制工具Mermaid
Mermaid:文本化图表绘制工具 Mermaid是一款基于JavaScript的图表工具,通过类似Markdown的文本语法生成多种图表(流程图、序列图、甘特图等)。其核心优势包括: 纯文本编写:代码式定义,无需设计技能 跨平台支持:GitHub/GitLab/Notion等原生集成 高效协作:文本格式兼容版本控制 典型应用场景:技术文档、项目管理和学习笔记。支持在线编辑(Mermaid Live Editor)或通过npm安装,提供主题定制和交互功能。开发者可通过VS Code插件或Obsidian等工
2026-01-15 17:09:08
645
原创 Chrome浏览器自动下载的AI模型文件
Chrome浏览器可能自动下载约1.8GB的Gemini Nano本地模型文件(weights.bin)。要彻底解决:1)在chrome://flags/禁用相关实验选项;2)手动删除用户数据目录中的OptGuideOnDeviceModel文件夹;3)检查chrome://components确认清理。该文件是实验性功能,稳定版用户若发现此文件可能是误启用了测试选项。建议定期检查浏览器组件,主动管理存储空间。操作核心是直接删除而非纠结设置,同时接受现代浏览器日益臃肿的现实。
2026-01-15 16:12:07
530
原创 数据库之StarRocks
StarRocks是一款高性能分布式OLAP数据库,通过列式存储和MPP架构实现极速查询,但需要付出高昂的硬件和维护成本。相比Doris和ClickHouse,它在复杂查询和高并发场景表现突出,但对内存和CPU要求极高,且实时更新会带来额外负载。使用时需权衡实际需求,避免为追求性能而过度投入资源。关键建议包括:合理规划数据分层、严格硬件选型、重视多表Join测试、建立完善监控体系。适合需要秒级响应多维分析且具备足够运维能力的场景,而非简单替代传统数据仓库。
2026-01-14 14:42:14
462
原创 Windows 下往 Elasticsearch 添加数据
本文介绍了Windows环境下向Elasticsearch添加数据的4种方法:1)使用内置curl命令;2)通过PowerShell调用Invoke-RestMethod;3)利用Kibana的Dev Tools界面;4)使用Python等编程语言写入。文章按使用场景从简单到复杂排序,强调初学者应优先考虑前两种无需安装的方法,但提醒用户不能仅停留在数据插入层面,必须提前规划索引设计和mapping策略,否则后期会出现字段类型错误、查询性能差等问题。
2026-01-14 13:41:29
414
原创 Elasticsearch 在 Windows安装
本文提供了Elasticsearch在Windows系统上的完整安装指南,包括系统要求、下载方式、安装步骤和配置方法。主要内容涵盖:1) 系统需满足Windows 10+/JDK 17+/4GB内存等要求;2) 从官网下载ZIP包并解压到指定目录;3) 配置环境变量和elasticsearch.yml文件;4) 通过命令行或服务方式启动;5) 验证安装及常见问题解决方法;6) 可选安装Kibana可视化工具;7) 生产环境安全配置建议。指南详细说明了每个步骤的操作方法,并附有配置示例和命令速查表,帮助用户快
2026-01-14 10:44:27
932
原创 python之Uvicorn介绍
Uvicorn 是一个高性能的 Python ASGI 服务器,专为运行异步 Web 应用(如 FastAPI、Starlette)设计。基于 uvloop 和 httptools,它提供极快的性能,支持 HTTP/1.1 和 WebSockets,并具备自动重载功能。安装简单(pip install uvicorn[standard]),可快速部署异步应用。生产环境建议搭配 Gunicorn 管理多进程。作为现代 Python 异步生态的核心组件,Uvicorn 是高并发 API 和实时应用的理想选择。
2026-01-14 09:29:04
583
原创 oracle 免费安装版本
本文介绍了Oracle数据库的免费版本选项,主要包括Oracle Database Express Edition (XE)、Oracle Database Free和Oracle Cloud Free Tier三种类型,适合学习、开发和小型项目使用。其中XE版本永久免费,支持12GB用户数据和2GB内存,是最适合初学者的选择。此外还提供了安装建议、免费管理工具推荐和学习资源,并提醒免费版本不可用于商业生产。对于想学习Oracle的新用户,推荐使用安装简单的Oracle Database 23c Expre
2026-01-12 10:24:40
577
原创 怎么搭建私有 python仓库?
本文介绍了搭建私有PyPI仓库的三种主流方案,重点推荐使用devpi工具。详细说明了devpi的安装配置、私有包上传和缓存机制,并指出常见误区。同时针对Docker场景提出建立私有基础镜像的必要性,以及完全离线环境的临时解决方案。文章强调供应链控制的重要性,建议立即搭建私有仓库并冻结依赖版本,避免直接连接公网等错误做法,为团队提供清晰的实施优先级指南。
2026-01-06 17:04:46
377
原创 开源项目 SQLBot Dockerfile、docker-compose.yaml、Dockerfile-base 三个文件直接的关系
SQLBot采用"三层套娃"架构实现高效开发:1)Dockerfile-base构建基础环境层,包含系统依赖和Python包;2)Dockerfile应用层基于基础镜像快速拷贝业务代码;3)docker-compose编排运行层实现容器连接。这种设计分离了环境构建(低频)和代码部署(高频),大幅提升构建效率。开发时应利用docker-compose的volumes挂载实现实时修改,避免频繁重建镜像。GitHub Actions自动化流程区分基础镜像和业务镜像构建,确保发布效率。关键要区分
2025-12-24 11:40:43
1082
原创 FastAPI MCP(Model Control Panel / Multi-Channel Processor)介绍
FastAPI MCP是SQLBot架构中的子应用,用于集中管理模型调用和多渠道任务请求。主要功能包括管理AI模型列表、数据源查询、处理多渠道请求(如问题处理、会话启动等),并提供统一响应规范。作为FastAPI主应用的子模块,MCP通过特定路由集成,采用微服务设计。典型调用流程涉及用户验证、异步LLM服务调用和结果返回。在Docker部署时需注意路由挂载顺序,避免因路径问题导致405错误。该模块实现了模型调用与任务处理的统一管理。
2025-12-23 19:24:23
551
原创 uv vs pip 完整对比
uv vs pip 对比摘要 uv是新一代Python包管理工具,相比pip具有显著优势: 性能:Rust编写,比pip快10-100倍 功能:集成虚拟环境管理(uv venv)、锁文件支持(uv.lock)、Python版本管理 依赖解析:更严格的冲突检测和确定性解析 项目管理:类似Poetry的完整项目管理能力(uv sync/init) 兼容性:完全支持pip命令语法 核心区别: pip成熟稳定但功能单一 uv提供一体化解决方案(包管理+虚拟环境+版本管理+项目管理) 建议新项目优先使用uv,现有项目
2025-12-18 17:36:04
475
原创 Docker 整体架构
Docker采用分层架构设计,主要包括客户端(CLI/Docker Desktop)、守护进程(dockerd)、containerd和runc等核心组件。客户端通过REST API与守护进程通信,守护进程管理镜像、容器等对象并调用containerd。containerd负责镜像管理和容器生命周期,最终通过runc实现容器运行。底层依赖Linux内核的命名空间、控制组和联合文件系统等特性实现隔离与资源限制。镜像采用分层存储,容器是镜像的运行实例,卷则提供持久化存储。这种模块化设计遵循OCI标准,支持网络和
2025-12-16 13:52:37
859
原创 Windows Subsystem for Linux (WSL) 介绍
Windows Subsystem for Linux (WSL) 是微软开发的Windows功能,允许在Windows上直接运行完整的GNU/Linux环境,无需虚拟机或双启动。WSL提供两种架构:WSL1通过系统调用转译运行Linux工具,而WSL2采用轻量级虚拟机运行完整Linux内核,支持systemd、GPU加速和Linux GUI应用。WSL2在文件系统性能、兼容性方面表现更优,适合开发、机器学习等工作。用户可通过wsl --install命令安装默认的WSL2版本,实现Windows与Linu
2025-12-16 11:47:00
280
原创 介绍 from typing import Optional
Python类型注解中的Optional[T]表示值可以是T类型或None,用于明确声明变量/参数/返回值允许为空。它让静态分析工具检测潜在空指针错误,强制处理None分支,是风险暴露机制而非运行时校验。常见误区包括混淆"可选参数"与类型注解、误认为Optional会进行运行时检查。最佳实践是仅当None是合法预期状态时才使用Optional,避免滥用导致API模糊。在公共接口设计中,Optional应谨慎使用,以保持约束清晰。
2025-12-15 11:33:03
356
原创 知识图谱存储、展示
知识图谱存储与Web端实现的核心要点:知识图谱本质是图结构+可扩展schema+高关联查询,推荐使用图数据库(如Neo4j、NebulaGraph)而非关系型数据库。存储方案包括图数据库、RDF三元组、向量+图混合及多数据库混合架构。Web端实现的关键在于系统设计而非前端可视化,需解决数据规模、查询优化、权限控制等问题。完整架构应包含数据层(图数据库、向量库)、图谱服务层(查询API、实体管理等)、Web API层(分页/裁剪接口)及前端层(G6/Cytoscape)。核心挑战是建立图谱思维,从本体设计入手
2025-12-10 10:03:07
325
原创 Pinpoint 是一套为分布式 Java/PHP 系统做调用链追踪 + 性能分析的方案
Pinpoint是一套分布式Java/PHP系统的调用链追踪和性能分析方案,采用字节码注入探针+后端存储+Web可视化的架构。核心优势在于零代码侵入、成熟的插件生态和对老旧Java系统的兼容性,特别适合传统大型Java企业。但存在部署复杂、HBase维护成本高、架构偏重等缺点,不适合云原生项目。建议新项目选择SkyWalking等轻量方案,而遗留Java系统则可发挥Pinpoint的深度追踪价值。
2025-12-09 17:44:29
725
原创 区块链系统设计
本文提出一个联盟链系统设计方案,支持智能合约,具备分布式账本、权限控制等功能。系统采用分层架构,包含网络层、共识层(Tendermint/BFT)、存储层(RocksDB)、执行层(WASM/EVM)等。关键设计包括:基于证书的身份认证、链上治理机制、数据隐私保护方案等。系统需满足2000+ TPS、3秒延迟等性能指标,提供节点软件、钱包、控制台等MVP组件。开发路线采用90天高频迭代,技术栈推荐Go/Rust语言,配合Prometheus监控等工具。方案特别强调安全审计、合规要求及灰度发布机制。
2025-12-09 11:43:50
1151
原创 部署DeepSeek开源模型
部署DeepSeek开源模型需要满足硬件、软件和依赖要求。硬件建议16GB+内存、20-50GB存储空间,推荐使用NVIDIA GPU。软件需Python 3.8+、CUDA工具包及深度学习框架(如PyTorch)。部署步骤包括:创建虚拟环境、下载模型、安装依赖及运行推理。高级选项支持Docker和API服务部署,性能优化建议采用量化、批处理等方法。注意事项包括模型大小、许可证合规及安全防护。完整部署需验证硬件配置、网络环境等功能测试。
2025-12-09 09:44:19
546
原创 认识TypeScript
TypeScript是JavaScript的超集,通过静态类型检查在编译阶段发现错误,提升代码质量。核心优势包括类型系统(代码即文档)、工具支持(智能补全)、面向对象特性(提高可维护性)和ESNext支持。改进方案建议从接口开始,逐步引入类型,将错误从运行时提前到编译时。示例展示了接口定义、联合类型和泛型的使用,体现TS在数据结构、函数签名和代码复用上的优势,帮助开发者编写更可靠、可维护的代码。
2025-12-08 17:09:21
1063
原创 常见、主流、可靠的机器学习与深度学习训练集网站
机器学习与深度学习数据集资源概览 本文整理了主流可靠的训练集资源,按任务类型分类: 综合平台:Kaggle、Google Dataset Search、Hugging Face等提供跨领域数据集 图像处理:ImageNet、COCO等经典CV数据集 文本/NLP:Hugging Face、Wikipedia语料等自然语言处理资源 语音/视频:LibriSpeech、Kinetics等音频视频专用数据集 科研专用:Stanford、MIT等学术机构发布的专业数据集 这些资源覆盖了机器学习各领域的研究和应用需求
2025-12-08 15:14:19
534
原创 OpenAI 的核心技术栈
OpenAI的核心技术栈涵盖深度学习框架、分布式训练、推理加速、数据处理、基础设施和应用层六大维度。其核心竞争力在于端到端的工业化AI生产线,包括自研Triton算子、PyTorch主框架、Megatron并行训练、MoE推理优化、PB级数据处理和微软Azure支持的超级GPU集群。相比Anthropic和Google,OpenAI在推理效率、产品化和分布式训练方面领先,但依赖微软基建;Anthropic以安全性和长文本处理见长;Google则凭借算法积累和TPU基础设施占据优势。三者在模型架构、训练技术、
2025-12-05 15:56:11
917
原创 大模型 Embeddings 的本质是什么?
摘要: Embedding是将离散文本映射到高维连续空间的数学表示,使语义相似的内容在向量空间中更接近,实现语义计算。其本质是维度压缩与语义结构化,为LLM提供底层向量计算基础。高质量Embedding由向量维度、训练语料和距离度量方式决定,支持语义检索、相似度计算等关键能力。在AI架构中,Embedding是RAG/知识库系统的入口与瓶颈。维度选择需权衡精度与成本:1536维(OpenAI small)是企业级RAG的最佳平衡点,3072维适合专业领域,而256/512维适用于低成本或大规模场景。
2025-12-05 15:37:47
856
原创 专业电影拍摄经典镜头组合大全表ai视频生成提示词
专业电影拍摄经典镜头组合大全表,包含组合名称、组成镜头、功能、常见用途和经典案例,结构清晰、方便参考:
2025-12-04 16:40:25
515
原创 winform与wpf的对比
如果你的系统涉及“流程复杂 + 状态多”,WinForm 的事件流会直接把你拖进泥潭。如果你无法肯定 2 年后仍维护这个软件,那 WinForm 就还能用。如果你想避免未来重写,那选 WinForm = 埋地雷。WinForm ≈ 技术债,只能在不得不用时继续用。**结论:**你做内部小工具 → WinForm。适合小组件,不适合大界面(因为不能自动换行)。你做企业级产品、长期维护 → WPF。非常适合做企业后台系统的框架布局。你未来想不想减少技术债?你的 UI 会不会变复杂?
2025-12-04 10:57:40
1182
原创 人工智能在资产评估方面结合
不要做一个“提高效率的工具”,要做一个“降低信任成本的平台”。如果你想落地,请按这个优先级行动:选定一个数据相对标准化、但人工处理极其繁琐的细分领域(如:二手车、特定类型的商业地产、专利组合)。你的核心竞争力不在于模型算法(大家都能用开源的),而在于谁能把非结构化的烂数据变成机器能读懂的因子。开发一个功能,让AI生成的每一个数字都能追溯到具体的证据来源(某份合同、某条新闻、某个财报数据)。
2025-12-04 09:55:44
650
原创 知识图谱与检索增强RAG的关系
知识图谱在大模型时代的价值与应用 知识图谱(KG)能够有效弥补大语言模型(LLM)的不足,包括减少幻觉、提供结构化推理框架以及与企业内部系统对齐。两者的结合可衍生多种商业化产品:企业内部智能问答系统、风险识别产品、技术知识中台、法律合规系统等。典型应用流程包括LLM解析用户意图、映射到图谱节点、检索事实路径、生成自然语言回答。LightRAG架构展示了知识图谱与LLM结合的实际应用,通过实体关系抽取构建轻量图谱,实现双层检索机制,为LLM提供结构化知识支持。这种组合特别适合小领域高精度场景,是构建可信智能系
2025-12-03 17:19:02
990
原创 如何写出专业视频生成 AI 提示词:从零到实战工具
专业视频AI提示词生成指南 本文提供了一套系统化的方法,帮助用户从零开始构建专业级视频生成AI提示词。主要内容包括: 目标与风格设定:强调使用专业术语描述镜头类型、运镜方式和场景元素,避免模糊形容词。 后期处理术语:介绍专业后期效果的关键词,如色彩调节、光效氛围等。 镜头叙事技巧:讲解如何通过运镜方式增强故事性和情绪表达。 结构化模板:提供标准化的提示词构建框架,包含12个关键维度。 自动化工具:展示Python代码示例,实现从简单输入到完整提示词的自动生成。 高级优化建议:包括光线调整、动作节奏描述和特效
2025-11-28 16:23:33
697
原创 VS Code 正确运行一个 Python 项目
如果你跳过这步,你运行出来的大概率是系统 Python,而不是项目虚拟环境,然后一堆报错。如果你现在是用 VS Code “打开单个文件”,那你压根没有在“项目”里工作。如果你连“入口在哪”都不确定,那说明你对自己的项目理解是零,需要先整理结构。如果你根本没创建虚拟环境,那就是你在偷懒,并且未来会被依赖冲突反噬。如果你连终端都不用,那你永远不会真正学会控制 Python 项目。如果你连目录结构都不重视,你跑任何项目都会混乱。如果你的项目比较复杂,这是唯一不出事的方式。,点右上角绿色三角按钮。
2025-11-28 13:59:45
310
原创 LLM(大模型)训练语料
LLM训练核心语料需求与法律领域微调方案 核心语料: 大规模高质量文本:需覆盖网页、书籍、代码、论文、对话等多样化内容,质量重于数量 结构化清洗数据:严格去重、去噪、标准化,避免模型产生幻觉 高质量对齐数据:包含专业问答、推理链等,使模型从"会说话"升级为"能解决问题" 法律领域微调方案: 优先使用7B-33B中文基础模型进行微调 必备语料包括法律法规、判决书、司法解释等,需严格结构化处理 关键步骤:指令微调→RLHF对齐→检索增强生成(RAG) 评估重点:法律准确性
2025-11-27 16:08:55
759
原创 python之UV介绍
uv是一个用 Rust 编写的高速、一体化的 Python 包管理工具,由Astral公司开发(该公司也是著名的 Python 代码格式化工具Ruff的创造者)。它的设计目标是取代传统的pippip-toolsvirtualenvconda等多个工具,用一个统一的、极速的工具来管理 Python 项目的依赖、虚拟环境和更多任务。uv不仅仅是pip的一个更快替代品,它代表了 Python 包管理向现代化、一体化和开发者体验优先的演进方向。它解决了 Python 长期以来依赖管理工具链碎片化和速度慢的痛点。
2025-11-27 11:08:59
416
原创 生成式人工智能(Generative AI)
摘要: 生成式人工智能(Generative AI)是能自主创造文本、图像、音频等内容的技术,基于Transformer、扩散模型等架构,如ChatGPT、Midjourney和Sora。与传统判别式AI不同,它通过分析数据模式生成全新内容,已广泛应用于创意领域。2025年,模型如GPT-5和Grok 4展现出接近通用人工智能的能力,但也面临伪造、版权等挑战,正重塑人类创作方式。
2025-11-26 14:22:55
674
原创 Win11 性能调优实用指南
本文针对 Win11 重度开发/办公用户(i7-13700+32GB内存+SSD)提供性能优化指南。核心建议包括:1)处理器计划设为"程序"优先前台响应;2)虚拟内存固定24GB避免卡顿;3)启用高性能电源模式;4)关闭核心隔离降低延迟;5)保持SSD至少20%可用空间。重点指出错误的分页文件设置是主要瓶颈,并提供分步优化方案,通过调整CPU调度、内存管理和后台应用等关键设置,显著提升多任务环境下的系统稳定性与响应速度。
2025-11-25 18:30:57
757
原创 WinForms 使用异步等待(Async/Await)性能好
摘要:在WinForms应用程序中,async/await模式是处理耗时请求的最佳方案,能保持UI响应性并简化代码结构。相比同步阻塞、Thread/Task.Run+Invoke和BackgroundWorker,async/await自动处理同步上下文,使代码更易维护。典型应用包括网络请求等I/O密集型操作,通过await释放UI线程,完成后自动返回更新界面,显著提升用户体验。
2025-11-25 17:51:59
317
office-vsto开发.pdf
2021-11-24
Office安装时候彻底清除历史文件工具之有效版
2020-12-16
ExcelAddIn3.zip
2020-12-11
Weiz.Lab-dgv-表头全选.zip
2020-11-19
ASP.NET MVC Application Using Entity Framework Code First
2014-04-14
c# 获取下面的最子级 双斜杠的都是获取的值
2021-11-08
app绑定微信成功 app怎么知道绑定成功了
2016-11-29
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅