bzoj4916-神犇和蒟蒻

题意

第一问,输出1 。

第二问,求
\[ \sum _{i=1}^n\varphi(i^2) \]
\(n\le 10^9\)

分析

\(\varphi\) 函数是非完全积性的,所以:
\[ \sum _{i=1}^n\varphi(i^2)=\sum _{i=1}^ni\varphi(i) \]
这个形式是一个函数和一个完全积性函数的点积。对于一个一般性的问题,\(f(n)\) 没有限制,\(g(n)\) 是一个完全积性函数。


\[ S(n)=\sum _{i=1}^nf(i)g(i) \]
那么有:
\[ \begin{aligned} \sum _{i=1}^ng(i)S(\lfloor\frac{n}{i}\rfloor)&=\sum _{i=1}^ng(i)\sum _{j=1}^{\lfloor\frac{n}{i}\rfloor}f(j)g(j) \\ &=\sum _{ij\le n}g(i)g(j)f(j) \\ &=\sum _{i=1}^ng(i)\sum _{j|i}f(j) \end{aligned} \]
由于 \(g\) 是完全积性的,所以 \(g(1)=1\) ,所以有
\[ S(n)=\sum _{i=1}^ng(i)\sum _{j|i}f(j)-\sum _{i=2}^ng(i)S(\lfloor\frac{n}{i}\rfloor) \]
如果 \(g\) 的前缀和以及 \((f*I)\) 比较好求的话,就可以用杜教筛相同的方法啦!

回到上面的题目,令 \(g(i)=i,f(i)=\varphi(i)\) ,那么就有:
\[ \begin{aligned} S(n)&=\sum _{i=1}^ni^2-\sum _{i=2}^niS(\lfloor\frac{n}{i}\rfloor) \\ &=\frac{n(n+1)(2n+1)}{6}-\sum _{i=2}^niS(\lfloor\frac{n}{i}\rfloor) \end{aligned} \]

转载于:https://www.cnblogs.com/owenyu/p/7396807.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值