cz_xuyixuan的博客

当我跨过沉沦的一切,向永恒开战的时候,你是我的军旗。

【LOJ3082】「2019 集训队互测 Day 5」小水题

【题目链接】 点击打开链接 【思路要点】 考虑一次钻孔操作对全局水位的影响。 注意到一次钻孔操作只会使得水向某一方向流动,以下认为水向右流动进行讨论。 定义函数 querySum(l,r)querySum(l,r)querySum(l,r) 表示区间 [l,r][l,r][l,r] 的...

2019-05-07 16:29:56

阅读数 462

评论数 0

【LOJ3075】「2019 集训队互测 Day 3」组合数求和

【题目链接】 点击打开链接 【思路要点】 所求的 fff 即为 ∑i=0n−1(x+1)id=(x+1)nd−1(x+1)d−1\sum_{i=0}^{n-1}(x+1)^{id}=\frac{(x+1)^{nd}-1}{(x+1)^d-1}∑i=0n−1​(x+1)id=(x+1)d...

2019-05-04 16:07:06

阅读数 69

评论数 0

【LOJ3074】「2019 集训队互测 Day 3」操作序列计数

【题目链接】 点击打开链接 【思路要点】 考虑计算 222 号操作不超过 iii 次的方案数。 它应当等于 222 个 k0k^0k0 的倍数、 111 个 k1k^1k1 的倍数、 111 个 k2k^2k2 的倍数、……、 111 个 kik^iki 的倍数总和为 NNN 的方案数...

2019-05-03 16:33:30

阅读数 148

评论数 0

【LOJ3077】「2019 集训队互测 Day 4」绝目编诗

【题目链接】 点击打开链接 【思路要点】 不难发现各个边双连通分量可以分开处理,桥边可以直接删除。 可以证明,对于每一个边双连通分量,当 M−NM-NM−N 超过 O(N)O(\sqrt{N})O(N​) 级别,答案一定为 YesYesYes 。 那么,将剩余图中的度为 222 的点缩...

2019-05-03 14:05:16

阅读数 112

评论数 0

【LOJ3080】「2019 集训队互测 Day 5」国际象棋

【题目链接】 点击打开链接 【思路要点】 不难得到 O(N3M3)O(N^3M^3)O(N3M3) 的暴力高斯消元做法。 将前 222 行,第 111 列的变量作为主元,从上到下、从左到右依次考虑变量 (i,j)(i,j)(i,j) 的转移式。 可以发现,涉及的变量中只有 (i+2,j...

2019-05-03 11:36:04

阅读数 66

评论数 0

【LOJ3069】「2019 集训队互测 Day 1」整点计数

【题目链接】 点击打开链接 【思路要点】 给出结论: 定义函数 χ(x) (x∈N+)\chi(x)\ (x\in\mathbb{N^{+}})χ(x) (x∈N+) ,满足 χ(x)={1x≡1 (mod 4)−...

2019-05-02 16:58:46

阅读数 120

评论数 0

【LOJ3073】「2019 集训队互测 Day 2」序列

【题目链接】 点击打开链接 【思路要点】 不妨令 MMM 为 222 的次幂。 可以发现题目中的初始序列满足:序列的前一半或后一半完全相同,序列的另一半递归地满足该性质。 并且,两个满足该性质的序列卷积后同样满足该性质。 因此,可以用 O(LogM)O(LogM)O(LogM) 个数描...

2019-05-02 16:49:11

阅读数 110

评论数 0

【LOJ3071】「2019 集训队互测 Day 2」神树大人挥动魔杖

【题目链接】 点击打开链接 【思路要点】 记 waysiways_iwaysi​ 表示从 111 号点走到 iii 号点的方案数,有 waysi=p×waysi−1+q×waysi−2 (i≥2)ways_{i}=p\times ways_{i-1}+q\times ...

2019-05-02 16:39:37

阅读数 320

评论数 0

【校内训练2019-04-26】踢罐子

【思路要点】 显然被选中的点受到的伤害总和为 4N(N−1)(N−2)4N(N-1)(N-2)4N(N−1)(N−2) ,考虑未被选中的点 DDD 对伤害总和的贡献。 首先,线段 ADADAD 必须与线段 BCBCBC 相交,否则点 DDD 显然不存在贡献。 其次,若 ∠CDB+∠CAB=π∠...

2019-04-26 19:52:33

阅读数 81

评论数 0

【BZOJ3675】【APIO2014】序列分割

【题目链接】 点击打开链接 【思路要点】 凸优化 + 决策单调性优化 dpdpdp 。 时间复杂度 O(NLogVLogN)O(NLogVLogN)O(NLogVLogN) 。 【代码】 #include<bits/stdc++.h> using na...

2019-04-26 18:10:57

阅读数 56

评论数 0

【BZOJ3328】PYXFIB

【题目链接】 点击打开链接 【思路要点】 注意到 ∑i=0N(Ni)xi=(x+1)N\sum_{i=0}^{N}\binom{N}{i}x^i=(x+1)^N∑i=0N​(iN​)xi=(x+1)N 且 Fi=(mati)1,1F_i=(mat^i)_{1,1}Fi​=(mati)1...

2019-04-25 15:29:57

阅读数 51

评论数 0

【LOJ6485】LJJ 学二项式定理

【题目链接】 点击打开链接 【思路要点】 ∑t=03at∑i=0N(Ni)si[i%4=t]\sum_{t=0}^{3}a_t\sum_{i=0}^{N}\binom{N}{i}s^i[i\%4=t]t=0∑3​at​i=0∑N​(iN​)si[i%4=t] =∑t=03at∑i=0N...

2019-04-25 13:54:29

阅读数 213

评论数 0

【LOJ3058】「HNOI2019」白兔之舞

【题目链接】 点击打开链接 【思路要点】 首先,求出 LLL 的任意原根 ggg ,以及其 kkk 次单位根 www 。 记初始给定的矩阵为 matmatmat ,那么答案 anstans_tanst​ 应当满足 anst=∑i=0L(Li)(mati)x,y[i%k=t]ans_t=...

2019-04-25 11:33:13

阅读数 116

评论数 0

【LOJ3059】「HNOI2019」序列

【题目链接】 点击打开链接 【思路要点】 没有修改的做法在《IOI2018中国国家候选队论文集——浅谈保序回归问题》中有所介绍。 具体做法如下: (1)(1)(1) 、注意到若所有 BiB_iBi​ 均相等,最小化 ∑i=1N(Ai−B)2=∑i=1NAi2−2AiB+B2\sum_{...

2019-04-24 17:01:02

阅读数 143

评论数 0

【LOJ3057】「HNOI2019」校园旅行

【题目链接】 点击打开链接 【思路要点】 枚举回文中心向外搜索,可以得到一个 O(N2+M2)O(N^2+M^2)O(N2+M2) 的 BFSBFSBFS 做法。 将边分为两类,一类为同色边,一类为异色边,显然每一步,向外搜索的两个方向 (x,y)(x,y)(x,y) 经过的边应当类型...

2019-04-24 14:50:50

阅读数 35

评论数 0

【LOJ3056】「HNOI2019」多边形

【题目链接】 点击打开链接 【思路要点】 不难发现唯一的终止状态就是所有点均与 NNN 直接相连的状态。 因此,使用最少的操作达到终止状态的方案一定是每次选择一个不与 NNN 直接相连,且与 NNN 连线只与一条边相交的节点,旋转对应的四边形。 因此最少次数即为不与 NNN 直接相连的...

2019-04-23 13:54:57

阅读数 206

评论数 0

【LOJ3055】「HNOI2019」JOJO

【题目链接】 点击打开链接 【思路要点】 考虑将字符串缩成若干个相同字符的段 (cnt,char)(cnt,char)(cnt,char) ,相邻的字符不相同。 考虑一个与某一个前缀匹配的后缀,若该后缀横跨了 x (x≥2)x\ (x\geq2)x ...

2019-04-23 13:54:50

阅读数 199

评论数 0

【LOJ3054】「HNOI2019」鱼

【题目链接】 点击打开链接 【思路要点】 考虑枚举 A,DA,DA,D ,那么显然选择 B,CB,CB,C 和 E,FE,FE,F 的方案数是独立的。 枚举 DDD ,将剩余点对 DDD 极角排序,按序枚举 AAA ,则选择 E,FE,FE,F 的方案数可以通过用哈希表维护一定角度内所...

2019-04-23 13:54:41

阅读数 201

评论数 0

【BZOJ4231】回忆树

【题目链接】 点击打开链接 【思路要点】 分开处理路径上竖直的字符串和在 LcaLcaLca 处拐弯的字符串。 在 LcaLcaLca 处拐弯的字符串总数在 O(∑∣S∣)O(\sum|S|)O(∑∣S∣) 级别,可以直接 KmpKmpKmp 判断。 竖直的字符串可以在离线询问后通过 ...

2019-04-22 14:54:01

阅读数 37

评论数 0

【BZOJ4230】倒计时

【题目链接】 点击打开链接 【思路要点】 记 f(i)f(i)f(i) 表示 iii 最大的数位,则有 f(i)+1≥f(i+1)f(i)+1\geq f(i+1)f(i)+1≥f(i+1) ,即 f(i)≤f(i−1)+1f(i)\leq f(i-1)+1f(i)≤f(i−1)+1 ...

2019-04-22 14:53:52

阅读数 42

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭