[洛谷P2738] [USACO4.1]篱笆回路Fence Loops

洛谷题目链接:[USACO4.1]篱笆回路Fence Loops

题目描述

农夫布朗的牧场上的篱笆已经失去控制了。它们分成了1~200英尺长的线段。只有在线段的端点处才能连接两个线段,有时给定的一个端点上会有两个以上的篱笆。结果篱笆形成了一张网分割了布朗的牧场。布朗想将牧场恢复原样,出于这个考虑,他首先得知道牧场上哪一块区域的周长最小。 布朗将他的每段篱笆从1到N进行了标号(N=线段的总数)。他知道每段篱笆有如下属性:

该段篱笆的长度

该段篱笆的一端所连接的另一段篱笆的标号

该段篱笆的另一端所连接的另一段篱笆的标号

幸运的是,没有篱笆连接它自身。对于一组有关篱笆如何分割牧场的数据,写一个程序来计算出所有分割出的区域中最小的周长。

例如,标号1~10的篱笆由下图的形式组成(下面的数字是篱笆的标号):

           1
   +---------------+
   |\             /|
  2| \7          / |
   |  \         /  |
   +---+       /   |6
   | 8  \     /10  |
  3|     \9  /     |
   |      \ /      |
   +-------+-------+
       4       5

上图中周长最小的区域是由2,7,8号篱笆形成的。

输入输出格式

输入格式:

第1行: N (1 <= N <= 100)

第2行到第3*N+1行: 每三行为一组,共N组信息:

每组信息的第1行有4个整数: s, 这段篱笆的标号(1 <= s <= N); Ls, 这段篱笆的长度 (1 <= Ls <= 255); N1s (1 <= N1s <= 8) 与本段篱笆的一端 所相邻的篱笆的数量; N2s与本段篱笆的另一端所相邻的篱笆的数量。 (1 <= N2s <= 8).

每组信息的的第2行有 N1s个整数, 分别描述与本段篱笆的一端所相邻的篱笆的标号。

每组信息的的第3行有N2s个整数, 分别描述与本段篱笆的另一端所相邻的篱笆的标号。

输出格式:

输出的内容为单独的一行,用一个整数来表示最小的周长。

输入输出样例

输入样例#1:

10
1 16 2 2
2 7
10 6
2 3 2 2
1 7
8 3
3 3 2 1
8 2
4
4 8 1 3
3
9 10 5
5 8 3 1
9 10 4
6
6 6 1 2
5
1 10
7 5 2 2
1 2
8 9
8 4 2 2
2 3
7 9
9 5 2 3
7 8
4 5 10
10 10 2 3
1 6
4 9 5

输出样例#1:

12

说明

题目翻译来自NOCOW。

USACO Training Section 4.1

题意: 给出一张无向图,要求出其中的最小环.

题解: 第一次做有关最小环的问题,写篇博客记录一下.

首先一开始读入十分的麻烦,然而我们发现每个点的度数不会超过\(9\),也就是说我们可以将一个点所连的边存下来,将他们从小到达排序,那么这样每个点就是唯一的并且可以用\(map\)来确定了.

那么接下来的问题就是如何求解无向图中的最小环.求最小环有很多方法:

  1. \(floyd\)的更新的方式求最小环.
  2. 枚举断边\(u\to v\),以\(u\)为起点跑最短路,时间复杂度\(O(n*m*logn)\).
  3. 构建图的最小生成树,枚举向树中加边,倍增计算树上两点间距离,时间复杂度\(O(mlogm+nlogn)\).

因为这题的数据比较小,可以直接用\(floyd\).

我们先回忆一下\(floyd\)的过程:枚举中间点,枚举路径起点终点更新.当我们的中间点枚举到\(k-1\)的时候,前\(1\)~\(k-1\)的节点之间的最短路都已经更新完了,那么此时再枚举到第\(k\)个点的时候,再枚举路径的起点\(i\),终点\(j\),此时的\(i\to j\)的最短路是没有更新过的,也就是说由\(i\to k,k\to j, j\to i\)组成的环可能可以更新图中的最小环,那么就直接检查更新就可以了.

#include<bits/stdc++.h>
using namespace std;
const int N = 100+5;
const int inf = 0x3f3f3f;

int n, cnt = 0, dist[N][N], edge[N][N], b1[15], b2[15], c[N], len[N], ans = inf;

struct node{
    int f[15];
    node(){ memset(f, 0, sizeof(f)); }
    node(int *a){ memcpy(f, a, sizeof(f)); }
    bool operator < (const node &x) const {
        for(int i = 1; i <= 9; i++)
            if(x.f[i] != f[i]) return f[i] < x.f[i];
        return false;
    }
}n1, n2;

map <node, int> id;

int main(){
    ios::sync_with_stdio(false);
    int cnt1 = 0, cnt2 = 0, x, y; cin >> n;
    for(int i = 0; i <= 101; i++)
        for(int j = 0; j <= 101; j++) dist[i][j] = edge[i][j] = inf;
    for(int i = 1; i <= n; i++){
        cin >> c[i] >> len[i] >> cnt1 >> cnt2;
        memset(b1, 0, sizeof(b1)), memset(b2, 0, sizeof(b2));
        for(int j = 1; j <= cnt1; j++) cin >> b1[j];
        for(int j = 1; j <= cnt2; j++) cin >> b2[j];
        b1[++cnt1] = c[i], sort(b1+1, b1+10), n1 = (node){ b1 };
        b2[++cnt2] = c[i], sort(b2+1, b2+10), n2 = (node){ b2 };
        if(!id[n1]) id[n1] = ++cnt;
        if(!id[n2]) id[n2] = ++cnt;
        x = id[n1], y = id[n2];
        edge[x][y] = edge[y][x] = min(edge[x][y], len[i]);
    }
    memcpy(dist, edge, sizeof(dist));
    for(int k = 1; k <= cnt; k++){
        for(int i = 1; i < k; i++)
            for(int j = i+1; j < k; j++)
                ans = min(ans, dist[i][j]+edge[i][k]+edge[j][k]);
        for(int i = 1; i <= cnt; i++)
            for(int j = 1; j <= cnt; j++)
                dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j]);
    }
    cout << ans << endl;
    return 0;
}

转载于:https://www.cnblogs.com/BCOI/p/10397980.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: p109 [noip2004 提高组] 合并果子: 这道题目是一道经典的贪心算法题目,题目大意是给定n个果子,每个果子的重量为wi,现在需要将这n个果子合并成一个果子,每次合并需要消耗的代价为合并的两个果子的重量之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的果子进行合并,然后将合并后的果子的重量加入到集合中,重复这个过程直到只剩下一个果子为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的合并方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的果子进行合并,这样就会得到一个更小的代价,与当前选择的方案矛盾。 usaco06nov fence repair: 这道题目是一道经典的贪心算法题目,题目大意是给定n个木板,每个木板的长度为li,现在需要将这n个木板拼接成一块长度为L的木板,每次拼接需要消耗的代价为拼接的两个木板的长度之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的木板进行拼接,然后将拼接后的木板的长度加入到集合中,重复这个过程直到只剩下一个木板为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的拼接方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的木板进行拼接,这样就会得到一个更小的代价,与当前选择的方案矛盾。 ### 回答2: 题目描述: 有n个果子需要合并,合并任意两个果子需要的代价为这两个果子的重量之和。现在有一台合并机器,可以将两个果子合并成一堆并计算代价。问将n个果子合并成一堆的最小代价。 这个问题可以用贪心算法来解决,我们可以使用一个最小堆来存储所有果子的重量。每次从最小堆中取出两个最小的果子,将它们合并成为一堆,并将代价加入答案中,将新堆的重量加入最小堆中。重复以上步骤,直到最小堆中只剩下一堆为止。这样得到的代价就是最小的。 证明如下: 假设最小堆中的果子按照重量从小到大依次为a1, a2, ..., an。我们按照贪心策略,每次都将重量最小的两个果子合并成为一堆,设合并的过程为b1, b2, ..., bn-1。因此,可以发现,序列b1, b2, ..., bn-1必然是一个前缀和为a1, a2, ..., an的 Huffman 树变形。根据哈夫曼树的定义,这个树必然是最优的,能够得到的代价最小。 因此,使用贪心策略得到的答案必然是最优的,而且时间复杂度为O(n log n)。 对于[usaco06nov] fence repair g这道题,其实也可以用相同的思路来解决。将所有木板的长度存储在一个最小堆中,每次取出最小的两个木板长度进行合并,代价即为这两个木板的长度之和,并将合并后木板的长度加入最小堆中。重复以上步骤,直到最小堆中只剩下一块木板。得到的代价就是最小的。 因此,贪心算法是解决这类问题的一种高效、简单但有效的方法,可以应用于很多有贪心性质的问题中。 ### 回答3: 这两个题目都需要对操作进行模拟。 首先是合并果子。这个题目先将所有果子放进一个优先队列中。每次取出来两个果子进行合并,直到只剩下一个果子即为答案。合并的代价为两个果子重量之和。每次合并完之后再将新的果子放入优先队列中,重复上述过程即可。 再来看fence repair。这个题目需要用到贪心和并查集的思想。首先将所有板子的长度放入一个最小堆中,每次取出堆顶元素即为最短的板子,将其与其相邻的板子进行合并,合并的长度为这两块板子的长度之和。操作完之后再将新的板子长度放入最小堆中,重复上述过程直到只剩下一块板子。 关于合并操作,可以使用并查集来实现。维护每个板子所在的集合,每次操作时合并两个集合即可。 最后,需要注意的是题目中给出的整数都很大,需要使用long long来存储避免溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值