SparkSQL将小文件合并

1、设置配置
	spark.sql("set hive.exec.dynamic.partition=true")
    spark.sql("set hive.exec.dynamic.partition.mode=nonstrict")
    spark.sql("SET spark.sql.shuffle.partitions=1") //优化,防止生成很多的小文件

2、进行insert into 将tmp里的很多小文件进行合并,合并到test中

 def mergeTest(spark: SparkSession, isCluster: Int): Unit = {
        val endDay = 20200427
        val endHour = 9
        val sql = s"insert into test partition(end_day=$endDay,end_time_hour=$endHour) " +
            s"select start_time, end_time,src_ip,src_port,dst_ip,dst_port " +
            s"from test_tmp where end_day=$endDay and end_time_hour=$endHour " +
            s" group by start_time, end_time,src_ip,src_port,dst_ip,dst_port"
        spark.sql(sql)
        println("mergeTest: " + sql)
        
    }

由于数据量本身不是特别大,所以直接采用了group by(在spark中属于宽依赖)的方式。 这里必须要加入group by。 否则算是窄依赖, 设置了合并参数也是无效的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值