[力扣c语言实现]1305. 两棵二叉搜索树中的所有元素

本文介绍了一种算法,用于合并两棵二叉搜索树的所有元素,并将其排序为一个升序数组。通过递归中序遍历和快速排序实现,适用于解决LeetCode上的题目“两棵二叉搜索树中的所有元素”。文章包含了完整的代码实现和注释。

1305. 两棵二叉搜索树中的所有元素

1. 题目描述

给你 root1 和 root2 这两棵二叉搜索树。
请你返回一个列表,其中包含 两棵树 中的所有整数并按 升序 排序。.

示例 1:
输入:root1 = [2,1,4], root2 = [1,0,3]
输出:[0,1,1,2,3,4]
示例 2:

输入:root1 = [0,-10,10], root2 = [5,1,7,0,2]
输出:[-10,0,0,1,2,5,7,10]
示例 3:

输入:root1 = [], root2 = [5,1,7,0,2]
输出:[0,1,2,5,7]
示例 4:

输入:root1 = [0,-10,10], root2 = []
输出:[-10,0,10]
示例 5:

输入:root1 = [1,null,8], root2 = [8,1]
输出:[1,1,8,8]

提示:
每棵树最多有 5000 个节点。
每个节点的值在 [-10^5, 10^5] 之间。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/all-elements-in-two-binary-search-trees
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.代码如下

#define deg_info(x)  do {printf("---------- %s:%d: %s ----------\r\n",__FUNCTION__,__LINE__,x);}while(0);
typedef struct TreeNode Node;
int calcNodeNr(struct TreeNode *root)
{
	if (root == NULL)
	{
		return 0;
	}
	return 1+calcNodeNr(root->left) + calcNodeNr(root->right);
}

//递归中序遍历
int traversInOrder(Node *root,int *pretArray,int *pindex)
{
	if (root == NULL)
	{
		return 0;
	}
	traversInOrder(root->left,pretArray,pindex);
	pretArray[*pindex] = root->val;
	(*pindex) += 1;
	traversInOrder(root->right,pretArray,pindex);
    return 1;
}

//快速排序
int partition(int *g,int left,int right)
{
    int key = g[left];
    while(left<right)
    {
        while(left<right && g[right] >= key)
        {
            right--;
        }
        g[left] = g[right];
        while(left<right && g[left] <= key)
        {
            left++;
        }
        g[right] = g[left];
    }
    g[left] = key;
    return left;
}

void quicksort(int *g,int left,int right)
{
    if(left < right)
    {
        int pivotloc = partition(g,left,right);
        quicksort(g,left,pivotloc-1);
        quicksort(g,pivotloc+1,right);
    }
}

int* getAllElements(struct TreeNode* root1, struct TreeNode* root2, int* returnSize)
{
	int *retArray = NULL;
	int AllNum = 0;
	Node *p1  = root1;
	Node *p2 = root2;
	int index = 0;
	AllNum = calcNodeNr(root1) + calcNodeNr(root2);//计算出所有的节点个数
	retArray = (int *)malloc(sizeof(int)*AllNum);
	if (retArray == NULL)
	{	
		deg_info("malloc failed!")
		return NULL;
	}
	memset(retArray,0,sizeof(int)*AllNum);
	traversInOrder(root1,retArray,&index);
	traversInOrder(root2,retArray,&index);
	if (index != AllNum)
	{
		deg_info("get an error order!")
		return NULL;
	}
	
	//快速排序
	quicksort(retArray,0,index-1);
	
	*returnSize = index;
	return retArray;
}
内容概要:本文研究基于SPEA2(Strength Pareto Evolutionary Algorithm 2)的移动机器人路径规划方法,利用该多目标优化算法在复杂环境中寻找最优或近似最优的机器人运动路径。文中详细阐述了SPEA2算法的基本原理及其在路径规划中的具体应用流程,并通过Matlab代码实现仿真验证,展示了算法在避障、路径平滑性和多目标优化方面的有效性。研究结合栅格地图建模,定义了包括路径长度、安全性与能耗在内的多个优化目标,体现了SPEA2在处理多目标冲突问题上的优势。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、机器人路径规划或人工智能相关领域的研究生及科研人员;熟悉进化算法并希望将其应用于实际工程问题的技术开发者。; 使用场景及目标:①掌握SPEA2算法在移动机器人路径规划中的建模与实现方法;②学习如何将多目标优化思想融【移动机器人路径规划】基于SPEA2的移动机器人路径规划研究(Matlab代码实现)入路径规划问题;③为后续研究NSGA-II、MOEA/D等其他多目标算法提供对比基准和技术参考; 阅读建议:此资源以Matlab代码为核心支撑,建议读者结合算法原理部分仔细研读代码实现细节,动手运行仿真案例,深入理解适应度函数设计、非支配解集维护及环境建模的关键步骤,从而全面提升对多目标进化算法在机器人应用中的实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值