深度学习
文章平均质量分 80
一寒惊鸿
阿里算法工程师,聚焦于人工智能这一璀璨的星辰,致力于在数据的海洋中寻找智慧的珍珠。
展开
-
【总结】深度学习在推荐领域的应用
当2012年Facebook在广告领域开始应用定制化受众(Facebook Custom Audiences)功能后,“受众发现”这个概念真正得到大规模应用,什么叫“受众发现”?如果你的企业已经积累了一定的客户,无论这些客户是否关注你或者是否跟你在Facebook上有互动,都能通过Facebook的广告系统触达到。“受众发现”实现了什么功能?在没有这个系统之前,广告投放一般情况都是用标签去区分用户转载 2017-07-26 14:59:28 · 5275 阅读 · 0 评论 -
【实践】端到端的OCR:验证码识别
验证码识别的思路非常暴力,大概就是这样:去噪+二值化字符分割每个字符识别验证码的难度在这3步上都有反应。比如噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。分割:字符粘连,7和4粘在一起。识别:字符各种扭曲,各种旋转。但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因原创 2017-06-22 17:54:31 · 25477 阅读 · 1 评论 -
【总结】文字检测与识别资源
综述[2015-PAMI-Overview]Text Detection and Recognition in Imagery: A Survey[paper] [2014-Front.Comput.Sci-Overview]Scene Text Detection and Recognition: Recent Advances and Futur转载 2017-06-22 17:48:53 · 24563 阅读 · 0 评论 -
【算法】算法知识点总结
## 项目知识点评估:1、fm + ffm + lr # fm 相比 lr 引进了特征组合(二次项) # fm 解决了数据稀疏性导致的参数训练不充分问题(尤其对于one-hot编码之后) # ffm 增加了field,隐向量不仅与特征相关,也与field相关 # 假设样本的 n 个特征属于 f 个field,那么FFM的二次项有 nf个隐向量。 # 而在FM模型中,每一维特征的...原创 2018-03-27 10:13:57 · 1760 阅读 · 1 评论 -
【算法】深度学习在CTR预估/推荐系统中的应用探索
前言深度学习凭借其强大的表达能力和灵活的网络结构在 NLP、图像、语音等众多领域取得了重大突破。在广告领域,预测用户点击率(Click Through Rate,简称 CTR)领域近年也有大量关于深度学习方面的研究。本文就近几年 CTR 预估领域中学术界的经典方法进行探究,并比较各自之间模型设计的初衷和各自优缺点。通过十种不同 CTR 深度模型的比较,不同的模型本质上都可以由基础的底层组件组成。 ...原创 2018-04-12 18:50:49 · 3860 阅读 · 2 评论 -
【总结】深度学习在推荐领域上之Lookalike 应用
当2012 年Facebook 在广告领域开始应用定制化受众(Facebook CustomAudiences)功能后,受众发现这个概念真正得到大规模应用。什么是受众发现?如果你的企业已经积累了一定的客户,无论这些客户是否关注你或者是否和你在Facebook 上有互动,你都能通过Facebook 的广告系统触达到。受众发现实现了什么功能?在没有这个系统之前,广告投放一般情况都是用兴趣标签去区分用户...原创 2018-04-29 17:02:14 · 6027 阅读 · 1 评论 -
【实践】广告ctr模型之Deep cross network (dcn)
广告ctr模型可用的深度模型其本质架构都一样(可见https://blog.csdn.net/dengxing1234/article/details/79916532),这也是限制了模型的发展路线。Deep cross network在广告ctr模型也是应用很常见,它聚焦于解决特征工程的问题,对比paper中提到:【DNN可以自动地学习特征地交互作用,然而,它们隐式地的生成所有的特征交互,这对于...原创 2018-12-07 11:44:28 · 2260 阅读 · 0 评论