斐波那契数列通项公式的推导

\(F_n=F_{n-1}+F_{n-2}\)

\(\frac{1}{-k}=\frac{1-k}{1}\)

\(k=\frac{1+\sqrt{5}}{2}\)

\(F_n-\frac{1+\sqrt{5}}{2}F_{n-1}=\frac{1-\sqrt{5}}{2}(F_{n-1}-\frac{1+\sqrt{5}}{2}F_{n-2})\)

\(T_n=F_n-\frac{1+\sqrt{5}}{2}F_{n-1}=\frac{1-\sqrt{5}}{2}T_{n-1}\)

\(T_1=1,T_n=(\frac{1-\sqrt{5}}{2})^{n-1}\)

\(F_{n+1}=\frac{1+\sqrt{5}}{2}F_n+(\frac{1-\sqrt{5}}{2})^n\)

\(F_{n+1}=\sum_{i=0}^n(\frac{1-\sqrt{5}}{2})^i(\frac{1+\sqrt{5}}{2})^{n-i}\)

\(F_{n+1}=\sum_{i=0}^n (-1)^i(\frac{1+\sqrt{5}}{2})^{n-2i}\)

\(q=-(\frac{1-\sqrt{5}}{2})^2=\frac{\sqrt{5}-3}{2}\)

\(F_{n+1}=\frac{2}{5-\sqrt{5}}[(\frac{1-\sqrt{5}}{2})^{n+2}+(\frac{1+\sqrt{5}}{2})^n]\)

\(F_{n+1}=\frac{\sqrt{5}}{5}[(\frac{1+\sqrt{5}}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1}]\)

\(F_n=\frac{\sqrt{5}}{5}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n]\)

转载于:https://www.cnblogs.com/AH2002/p/9865160.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值