HOJ 13102 Super Shuttle
题意:给定一个点 p 和 n 个圆,做某个经过点 p的 圆穿过尽可能多的圆,问可穿过最多的圆是多少。
思路:圆的反演变换:
给出反演极O和反演幂k>0,作点A的反演点A′。
令k=r^2,作出反演基圆⊙O(r),
1)若点A在⊙O(r)外,则过点A作圆的切线(两条),两个切点相连与OA连线交点就是点A′。
2)若点A在⊙O(r)内,则把上述过程逆过来:连结OA,过点A作直线垂直于OA,直线与⊙O(r)的交点处的切线的交点就是点A′。
3)若点A在⊙O(r)上,反演点A′就是点A自身。
推荐看
ACdreamers 的博客 。
我们取反演点就是点P。如果你看懂了反演,就可以知道,我们所做的圆经过反演变成一条直线(经过点P),而其它圆还是圆, 问题就变成了一条直线穿过尽可能多的圆。当中的tricks 就是反演之后圆可能很大,角度处理细节要注意。
代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 7 #define op operator 8 #define db double 9 #define cn const 10 #define cp const P& 11 #define rt return 12 using namespace std; 13 cn db pi = acos(-1.0); 14 cn db eps = 1e-9; 15 const int N = 1007; 16 17 inline int sig(db x) {rt (x>eps) - (x<-eps);} 18 19 int n; 20 struct P{ 21 db x, y; 22 P(db _x= 0, db _y =0) : x(_x), y(_y) {} 23 void in() {scanf("%lf %lf", &x, &y); } 24 P op-(cp a)cn {rt P(x-a.x, y-a.y); } 25 P op+(cp a)cn {rt P(x+a.x, y+a.y); } 26 P op*(db a)cn {rt P(x*a, y*a);} 27 db dis() {rt sqrt(x*x + y*y);} 28 }; 29 P p; 30 31 struct CCL{ 32 P o; 33 db r; 34 CCL() {} 35 CCL(P _o, db _r) : o(_o), r(_r) {} 36 void in() {o.in(), scanf("%lf", &r); } 37 }c[N]; 38 39 CCL Inverse(CCL ci) { 40 CCL T; 41 db t = (ci.o - p).dis(); 42 db x = 97. / (t - ci.r); 43 db y = 97. / (t + ci.r); 44 T.r = (x - y) / 2.0; 45 db s = (x + y) / 2.0; 46 T.o = p + (ci.o - p) * (s / t); 47 rt T; 48 } 49 50 struct L{ 51 db alpha; 52 int t; 53 L(db a=0, int t = 0) : alpha(a), t(t) {} 54 bool op<(cn L& a)cn { 55 if(sig(alpha - a.alpha)) rt sig(alpha - a.alpha) < 0; 56 rt t > a.t; 57 } 58 }; 59 L s[N<<3]; 60 int ct; 61 62 void add_ang(db a1, db a2) { 63 s[ct++] = L(a1, 1), s[ct++] = L(a2, -1); 64 if(sig(a2 - pi) > 0) s[ct++] = L(a1-pi-pi, 1), s[ct++] = L(a2-pi-pi, -1); 65 if(sig(a1 + pi) < 0) s[ct++] = L(a1+pi+pi, 1), s[ct++] = L(a2+pi+pi, -1); 66 } 67 68 void qie(CCL A, CCL B) { 69 db d = (A.o-B.o).dis(); 70 bool f = 0; 71 db rdiff = A.r - B.r, rsum = A.r + B.r; 72 if(sig(d + A.r - B.r) <= 0) { 73 s[ct++] = L(-pi-pi, 1), s[ct++] = L(pi+pi, -1); return ; 74 } 75 if(sig(d + B.r - A.r) < 0) return ; 76 77 db base = atan2(B.o.y - A.o.y, B.o.x - A.o.x); 78 db alpha = acos(rdiff / d); 79 80 if(sig(d - rsum) <= 0) { 81 add_ang(base - alpha, base + alpha); 82 } else { 83 db ang = acos(rsum / d); 84 add_ang(base - alpha, base - ang); 85 add_ang(base + ang, base + alpha); 86 } 87 } 88 89 void solve() { 90 for(int i = 0; i < n; ++i) c[i] = Inverse(c[i]); 91 92 int mx = 0; 93 bool flag = 0; 94 for(int i = 0; i < n; ++i) { 95 ct = 0, flag = 0; 96 for(int j = 0; j < n; ++j) { 97 if(i == j) continue; 98 qie(c[i], c[j]); 99 } 100 sort(s, s+ct); 101 102 int mv = 0; 103 for(int j = 0; j < ct; ++j) { 104 mv += s[j].t; 105 mx = max(mx, mv); 106 } 107 } 108 printf("%d\n", mx+1); 109 } 110 111 int main() 112 { 113 while(scanf("%d", &n) != EOF) { 114 p.in(); 115 for(int i = 0; i < n; ++i) c[i].in(); 116 solve(); 117 } 118 return 0; 119 }