AcWing 837. 连通块中点的数量【并查集】


一、题目链接

AcWing 837. 连通块中点的数量


二、题目分析

(一)算法标签

并查集

(二)解题思路

注意本题输入操作不要用char op[3]; + scanf("%s", op); 要用string op; + cin >> op;
初始化:

for (int i = 1; i <= n; i ++ )
{
    p[i] = i;
    cnt[i] = 1;
}

返回x的祖宗结点:

// 返回x的祖宗结点 + 路径压缩
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

判断a和b是否在同一个集合里面:

// 判断a和b是否在同一个集合里面
bool query(int a, int b)
{
    return find(a) == find(b);
}

合并a和b所在的两个集合:

// 合并a和b所在的两个集合,前提是a和b不在一个集合里面,因此在merge之前要判断一下
void merge(int a, int b)
{
    a = find(a), b = find(b);
    p[a] = b;
    cnt[b] += cnt[a];
}

返回a所在连通块(集合)的数量:

// 返回a所在连通块(集合)的数量
int count(int a)
{
    return cnt[find(a)];
}

三、AC代码

解法一:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10;

int n, m;
int a, b;
string op;

int p[N], cnt[N];
// 返回x的祖宗结点 + 路径压缩
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 判断a和b是否在同一个集合里面
bool query(int a, int b)
{
    return find(a) == find(b);
}
// 合并a和b所在的两个集合,前提是a和b不在一个集合里面,因此在merge之前要判断一下
void merge(int a, int b)
{
    a = find(a), b = find(b);
    p[a] = b;
    cnt[b] += cnt[a];
}
// 返回a所在连通块(集合)的数量
int count(int a)
{
    return cnt[find(a)];
}
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        cnt[i] = 1;
    }
    
    while (m -- )
    {
        cin >> op;
        if (op == "C")
        {
            
            scanf("%d%d", &a, &b);
            if (!query(a, b)) merge(a, b);
        }
        else if (op == "Q1")
        {
            scanf("%d%d", &a, &b);
            if (query(a, b)) puts("Yes");
            else puts("No");
        }
        else
        {
            scanf("%d", &a);
            printf("%d\n", count(a));
        }
    }
    return 0;
}

四、其它题解

AcWing 837. 连通块中点的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值