一、题目链接
二、题目分析
(一)算法标签
背包问题 DP
(二)解题思路
注意 f[i][j] = f[i - 1][j]; // 不选
的位置
三、AC代码
解法一:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m;
int s[N];
int v[N][N], w[N][N];
// f[i][j] 表示从前i组中选,总体积不超过j的方案的最大价值
int f[N][N];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
scanf("%d", &s[i]);
for (int j = 1; j <= s[i]; j ++ )
scanf("%d%d", &v[i][j], &w[i][j]);
}
for (int i = 1; i <= n; i ++ ) // 枚举组数
for (int j = 0; j <= m; j ++ ) // 枚举背包容量
{
f[i][j] = f[i - 1][j]; // 不选
for (int k = 1; k <= s[i]; k ++ ) // 枚举第i组的第几个物品
{
if (j >= v[i][k]) // 选第i组第k个物品
f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);
}
}
cout << f[n][m] << endl;
return 0;
}