- 博客(2)
- 收藏
- 关注
原创 神经网络性能评价指标
神经网络性能评价指标对于一个好不容易训练出来的模型,我们需要用数学工具直观的了解它的性能好坏。先来了解混淆矩阵一.混淆矩阵首先,所有的样本(数据)中,可以被分为正样本和负样本。其次,我们在对样本进行分类的时候也会分出正样本和负样本,但我们的判断是有错误的,故存在以下情况:True Positive(真正,TP):将正样本预测为正样本True Negative(真负,TN):将负样本预测为负样本False Positive(假正,FP):将负样本预测为正样本False Negative(假
2021-07-13 19:43:11 11936
转载 YOLOv3损失函数学习记录
title: YOLOv3date: 2021-07-08 16:58:38tags: noYOLOv3的网络结构图YOLOv3采用了Darknet53的backbone(采用了Resnet的残差结构),其输出为3张不同尺度的特征图(采用了SSD的思想)。特征图越小,每个grid cell对应的感受野越大,对应大目标的检测。拿上图中右下角 ( 255 ∗ 13 ∗ 13 ) (2551313) (255∗13∗13)的特征图为例, 13 ∗ 13 是特征图大小,255可以拆分为 3 ∗ ( 4.
2021-07-13 15:45:42 2484
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人