深入学习LLM开发 第二六章:模型蒸馏

模型蒸馏(Knowledge Distillation)是一种将大型复杂模型(教师模型)的知识迁移到小型轻量模型(学生模型)的技术,由Hinton等人于2015年提出。其核心思想是通过模仿教师模型的输出特征(而不仅仅是最终预测结果),使得学生模型在保持较小参数量级的同时,尽可能接近教师模型的性能。

一、核心原理

  1. 知识表示

    • 软标签(Soft Labels):教师模型的输出概率分布(经过温度调节后的softmax结果),相比硬标签(one-hot编码)包含更多信息(如类别间相似性)。
    • 中间层特征:教师模型的隐藏层输出或注意力矩阵(用于特征对齐)。
  2. 温度参数(Temperature)
    通过引入温度参数 ( T ),软化概率分布:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沙子可可

你的鼓励是我创造的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值