python 手写字符识别

本文介绍了使用Python进行手写字符识别的实践,包括构建深度学习网络模型、训练过程以及测试方法。通过训练数据调整网络权重,利用Adam优化器和多步学习率调度策略提高模型性能。
摘要由CSDN通过智能技术生成

参考文献:https://blog.csdn.net/ShakalakaPHD/article/details/110694933

·前言

手写字符串识别,机器视觉入门项目前几周,我们专业也开展了深度学习,学习了字符串识别的基本原理,今天就和大家分享一下。

·技术原理

包括训练网络和测试网络两部分。

  1. 训练网络:

①准备好大量的数据集

②自己构建一个网络模型(这是相当重要的一步)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, 3, 1, 1),  # 32x28x28
            nn.ReLU(),
            nn.MaxPool2d(2)
        )  # 32x14x14
        self.conv2 = nn.Sequential(
            nn.Conv2d(32, 64, 3, 1, 1),  # 64x14x14
            nn.ReLU(),
            nn.MaxPool2d(2)  # 64x7x7
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值