Prime Path
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 17245 | Accepted: 9705 |
Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
1733
3733
3739
3779
8779
8179
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3 1033 8179 1373 8017 1033 1033
Sample Output
6 70
#include <iostream> #include <stdio.h> #include<queue> using namespace std; int n,m,vis[10100] ,mi,flag[10001],endi,p; queue<int>q; int pow(int a,int b){ int ans=1; for (int i=0;i<b;i++){ ans*=a; } return ans; } int bfs2() { int num[4]; queue<int> Q; Q.push(n); while (!Q.empty()) { int t = Q.front(); Q.pop(); if (t==m) { return flag[t]; } int temp =t; for (int i=0; i<4; i++) { num[i]=temp%10; temp/=10; } for (int i=0; i<4; i++) { for (int j=0; j<10; j++) { if (num[i]!=j) { int v = t+ (-num[i]+j)*pow(10,i); if (v/1000==0){ continue; } if (vis[v]==0&&flag[v]==0) { flag[v]=flag[t]+1; Q.push(v); } } } } } return -1; } int main() { int i,o,x,k,p,j,u,t; for(i=2; i<10000; i++)vis[i] =0; for(i=2; i*i<10000; i++) for(j=i*i; j<10000; j+=i) if(vis[j] ==0)vis[j] =1; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); mi=99999; for(i=0; i<10000; i++)flag[i] =0; endi=1; flag[n]=1; p=1; printf("%d\n",bfs2()-1); } return 0; }