一、圆排列简介
圆排列简单来说,就是排列的数围成了一个圈,如下图:
二、圆排列数
假设总共有
n
n
n个数,圆排列数为
x
x
x,先给出结论:
x
=
A
n
n
n
=
(
n
−
1
)
!
x = \frac{A_n^n}{n}=(n-1)!
x=nAnn=(n−1)!
下面简单说明一下原因:
首先对于
n
n
n个数的直线排列肯定是
A
n
n
A_n^n
Ann。那么为什么要除
n
n
n呢?看下图:
对于一个排列 1 、 2 、 3 、 4 1、2、3、4 1、2、3、4来说,由于排列的数围成了一个圆,所以将其旋转一次,使得 4 4 4在最上方,在我们日常生活中看来,这显然属于一种排列,无非是不同的方向看过去罢了。同样的, 3 3 3、 2 2 2在上方也是如此。
对于一个 n n n个数的排列来说,可以旋转 n n n次,每个排列都是 n n n次重复。所以要除以 n n n。