《A Deep Reinforced Sequence-to-Set Model for Multi-Label Text Classification》泛读 (2019 ACL)

Brief description

基于对模型SGM(Seq2Seq)的改进。[发表于COLING2018]
在SGM的基础上加了一个Set decoder,利用set的无序性,降低错误的标签排序带来的影响。(对于作者在Sequence decoder上叠加一个Set decoder的做法,并不是特别理解其必要性)

SGM存在的问题:

  1. 当所要预测的标签序列长度增加时,F1值下降,HL上升,即结果变差。
  2. 输出结果的内部顺序依赖于标签空间的排序 。

Seq2Set出发点:

  1. 基于SGM问题2进行了改进,所提出得新模型利用了深度强化学习,不仅捕捉到标签之间的相互关系,而且减少了对标签序列的依赖。

Seq2Set仍存在的问题:

  • 在低频标签上效果差,因为MC采样时在低频标签上更为稀疏。(author)
  • Sequence decoder 中仍然通过标签的出现频率排序,t时刻只能学习到前面标签的内容,低频的排在后面的标签内容无法学习到。所以不能很好的拟合标签内部的相关性。(me)

个人小结:

  • 模型SGM、Seq2Set都把多分类问题当成一个序列生成任务,通过seq2seq框架来模拟标签之间的内在关联。虽然结果确有提升,但通过序列生产的方式是否能学习到标签内部的关联性还有待商榷。
  • Seq2Set 使用了self-critical policy gradient算法来训练模型。(有待进一步了解此算法)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值