自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 万卡集群训练任务挂了?别慌,这本秘籍帮你解决!

大规模AI集群运行过程中频繁因为各类硬件、软件故障导致训练任务中断,如何快速发现故障、缩短故障恢复时间MTTR成为提高AI集群可用度的重点方向。本文汇总了昇腾断点续训特性提供的故障检测、故障恢复能力以及面临的问题和挑战。

2026-01-04 15:10:45 934

原创 RLHF-PPO 昇腾训推共卡方案案例总结(下)

RLHF-PPO 昇腾训推共卡方案案例总结(下)

2025-12-29 15:17:11 853

原创 RLHF-PPO 昇腾训推共卡方案案例总结(上)

RLHF-PPO 昇腾训推共卡方案案例总结(上)

2025-12-29 11:18:52 625

原创 基于KTransformers在300I DUO单机部署满血版DeepSeek-R1的实践

基于KTransformers在300I DUO单机部署满血版DeepSeek-R1的实践

2025-12-26 17:59:16 1094

原创 超节点FSDP2训练MOE大模型:GroupedMatmul NZ使能和性能收益分析

超节点FSDP2训练MOE大模型:GroupedMatmul NZ使能和性能收益分析

2025-12-26 17:52:31 388

原创 大规模训练集群性能问题(下降或抖动)分享及性能问题解决方案

大规模训练集群性能问题(下降或抖动)分享及性能问题解决方案

2025-12-26 17:05:27 814

原创 超节点FSDP2训练MoE大模型昇腾联创设计(下)

为了进一步挖掘 XTuner V1 训练方案的上限,实验室研究团队与华为昇腾技术团队在 Ascend A3 超节点上进行联合优化,充分利用超节点硬件特性,FSDP2首次在Qwen 235B MoE上实现了相比传统3D并行更高的 MFU(Model FLOPS Utilization,模型浮点运算利用率)。在理论算力落后 NVIDIA H800 近 20% 的情况下,最终实现训练吞吐超过 H800 近 5%,MFU 反超 20% 以上。

2025-12-24 14:26:48 1016

原创 超节点FSDP2训练MoE大模型昇腾联创设计(上)

2025年9月8日,上海人工智能实验室开源书生大模型新一代训练引擎XTuner V1。XTuner V1 是伴随上海AI实验室“通专融合”技术路线的持续演进,以及书生大模型研发实践而成长起来的新一代训练引擎。相较于传统的 3D 并行训练引擎,XTuner V1 不仅能应对更加复杂的训练场景,还具备更快的训练速度,尤其在超大规模稀疏混合专家(MoE)模型训练中优势显著。

2025-12-24 14:26:23 1209

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除