cnn
卷积神经网络CNN的结构一般包含这几个层:
输入层:用于数据的输入
卷积层:使用卷积核进行特征提取和特征映射
激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
输出层:用于输出结果
导包
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
换了一台电脑,这台只装了pytorch,没有装Torchvision,重新安装Torchvision
conda install torchvision
D:\document\ML\camp>conda install torchvision
Fetching package metadata ...............
PackageNotFoundError: Packages missing in current channels:
- torchvision
找不到相应的package
换官网上安装命令conda install pytorch-cpu torchvision-cpu -c pytorch,报http请求错误
D:\document\ML\camp>conda install pytorch-cpu torchvision-cpu -c pytorch
Fetching package metadata ...
CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/repodata.json>
Elapsed: -
删掉中间的pytorch
D:\document\ML\camp>conda install torchvision-cpu -c pytorch
Fetching package metadata .................
Solving package specifications: .
Package plan for installation in environment C:\ProgramData\Anaconda3:
The following NEW packages will be INSTALLED:
torchvision-cpu: 0.2.2-py_3 pytorch
Proceed ([y]/n)? y
torchvision-cp 100% |###############################| Time: 0:00:01 23.94 kB/s
装好了
加载数据
# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size