PyTorch: CNN实战MNIST手写数字识别

使用PyTorch构建CNN模型,针对MNIST数据集进行手写数字识别的实战,通过训练和计算损失,最终达到98%的识别准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch: CNN实战MNIST手写数字识别

cnn

卷积神经网络CNN的结构一般包含这几个层: 
输入层:用于数据的输入 
卷积层:使用卷积核进行特征提取和特征映射 
激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 
池化层:进行下采样,对特征图稀疏处理,减少数据运算量。 
全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失 
输出层:用于输出结果

导包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

换了一台电脑,这台只装了pytorch,没有装Torchvision,重新安装Torchvision

conda install torchvision
D:\document\ML\camp>conda install torchvision
Fetching package metadata ...............

PackageNotFoundError: Packages missing in current channels:

  - torchvision

找不到相应的package
换官网上安装命令conda install pytorch-cpu torchvision-cpu -c pytorch,报http请求错误

D:\document\ML\camp>conda install pytorch-cpu torchvision-cpu -c pytorch
Fetching package metadata ...
CondaHTTPError: HTTP 000 CONNECTION FAILED for url <https://conda.anaconda.org/pytorch/win-64/repodata.json>
Elapsed: -

删掉中间的pytorch

D:\document\ML\camp>conda install torchvision-cpu -c pytorch
Fetching package metadata .................
Solving package specifications: .

Package plan for installation in environment C:\ProgramData\Anaconda3:

The following NEW packages will be INSTALLED:

    torchvision-cpu: 0.2.2-py_3 pytorch

Proceed ([y]/n)? y

torchvision-cp 100% |###############################| Time: 0:00:01  23.94 kB/s

装好了

加载数据

# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
                               train=True,
                               transform=transforms.ToTensor(),
                               download=True)

test_dataset = datasets.MNIST(root='./data/',
                              train=False,
                              transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值