【1195】判断整除

这篇博客介绍了如何判断一个正整数序列是否能通过插入加号或减号后被某个整数k整除。算法分析包括对数据预处理,利用余数进行状态转移,以及通过动态规划求解问题的核心思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】
       一个给定的正整数序列,在每个数之前都插入+号或−号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
       (+1) + (+2) + (+4) = 7
       (+1) + (+2) + (-4) = -1
       (+1) + (-2) + (+4) = 3
       (+1) + (-2) + (-4) = -5
       (-1) + (+2) + (+4) = 5
       (-1) + (+2) + (-4) = -3
       (-1) + (-2) + (+4) = 1
       (-1) + (-2) + (-4) = -7
       所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、−3、−6、−9……都可以认为是3的倍数。
【输入】
       输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。
【输出】
       如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)。
【输入样例】
       3 2
       1 2 4
【输出样例】
       NO
【算法分析】
       首先,先看题干中的例子,可以看出,组合后的结果的符号与整除于否无关,所以只需考虑绝对值的情况。
       再者,序列中的数字,能影响答案的,并不是整个数,而是它摸k的值,所以对数据进行处理,缩小数据。
              for(int i=1;i<=n;i++) {
                      cin>>tmp;
                      tmp%=k;//预处理
                      a[i]=tmp;
               }
       接下来,继续分析。
       由1,2,4来分析,如果从1开始加入序列,那么1可以被1整除。
       接下来2加入,这样就有1和3(结果只取绝对值)两个数可以整除。
       再接下来是4,这样子1,3,5,7就都符合整除规则了。
       所以我们就想到可以从头开始,一个一个来(让元素入列)。因为元素越多,组合方式是以指数级爆炸的,又因为如此多的组合的结果有大量重复,所以说就想到可以以k为数组的第二维,只要枚举余数,就可以将复杂度控制到可控范围。
       那么,就可以用bool变量f[i][j]表示前i个数是否可以被j整除(1可以,0不可以)
       如果要转移到fi,j的状态,那么就要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值