【问题描述】
一个给定的正整数序列,在每个数之前都插入+号或−号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、−3、−6、−9……都可以认为是3的倍数。
【输入】
输入的第一行包含两个数:N(2<N<10000)和k(2<k<100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。
【输出】
如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)。
【输入样例】
3 2
1 2 4
【输出样例】
NO
【算法分析】
首先,先看题干中的例子,可以看出,组合后的结果的符号与整除于否无关,所以只需考虑绝对值的情况。
再者,序列中的数字,能影响答案的,并不是整个数,而是它摸k的值,所以对数据进行处理,缩小数据。
for(int i=1;i<=n;i++) {
cin>>tmp;
tmp%=k;//预处理
a[i]=tmp;
}
接下来,继续分析。
由1,2,4来分析,如果从1开始加入序列,那么1可以被1整除。
接下来2加入,这样就有1和3(结果只取绝对值)两个数可以整除。
再接下来是4,这样子1,3,5,7就都符合整除规则了。
所以我们就想到可以从头开始,一个一个来(让元素入列)。因为元素越多,组合方式是以指数级爆炸的,又因为如此多的组合的结果有大量重复,所以说就想到可以以k为数组的第二维,只要枚举余数,就可以将复杂度控制到可控范围。
那么,就可以用bool变量f[i][j]表示前i个数是否可以被j整除(1可以,0不可以)
如果要转移到fi,j的状态,那么就要