- 博客(9)
- 收藏
- 关注
原创 CronExpression的输入输出,不符合预期问题解决
最近需要使用cron表达式定期执行任务,因此使用到了CronExpression,对cron表达式进行解析,来获取下一次的执行时间。此处我使用的是org.drools.core.time.impl.CronExpression。结果发现了一个可能会坑到人的问题:输入的cron表达式,与输出的解析后的时间不符…>_<public static void main(String[] args) { try { long now = System.currentTimeM
2021-06-15 16:19:14 1052
原创 Java递归求笛卡尔积小案例
最近遇到一个需要计算笛卡尔积的需求,由于乘积结果较小,因此可以使用递归方法,这样也方便理解一些。笛卡尔积实际就是在一个类似矩阵的结果集中,从每行逐个取出元素进行组合的结果,直到最后一行就可以跳出循环。搞清楚大致实现原理后,就可以敲代码啦~我的实现方法没有考虑效率,只是用于抛砖引玉:class DescartesTest { @Test void descartes() { List<String> list1 = new ArrayList<>
2020-10-10 11:45:10 229
原创 MyBatis源码学习小结
1.什么是MyBatis根据官方介绍,MyBatis是一款优秀的持久层框架,它支持自定义SQL、存储过程以及高级映射。MyBatis免除了几乎所有的JDBC代码以及设置参数和获取结果集的工作。MyBatis可以通过简单的XML或注解来配置和映射原始类型、接口和Java POJO(Plain Old Java Objects,普通老式Java对象)为数据库中的记录。MyBatis官网地址如下:https://mybatis.org/mybatis-3/zh/index.html但在实际项目应用中,我
2020-10-09 14:50:13 284 1
原创 Proxychains4 rsync 上传文件报错问题排查
使用proxychains4 rsync 上传文件的时候一直没上传成功,报错如下:rsync: [sender] read error: Connection reset by peer (54)rsync error: error in socket IO (code 10) at io.c(782) [sender=3.2.2]检查了一遍配置、地址等都没有什么问题,排查了很久,最后发现是文件夹所在磁盘满了。。。将磁盘中不用的文件删除,留出一定空间后再上传就OK了。。。真是尴尬啊。。。...
2020-07-30 10:36:55 608
原创 HTTP报文格式 -《HTTP权威指南》阅读笔记
HTTP报文是简单的格式化数据块,主要由三个部分组成:起始行、首部、主体。 所有的HTTP报文都可以分为两类:请求报文、响应报文。一.起始行 所有的HTTP报文都以一个起始行作为开始。请求报文的起始行说明了要做什么,响应报
2020-06-03 13:58:43 251
原创 URI和URL和URN的区别 -《HTTP权威指南》阅读笔记
如果要说URI和URL和URN的区别,那就得先从Web服务器和Web资源说起。Web服务器是Web资源的宿主。Web资源可以是Web服务器中的那些静态文件,也可以是一段可以生成动态内容的程序。一.URI 每个Web资源都有能用来唯一标识并定位自己的名字,这样客户端在请求时才能获取到指定的Web资源。其中这个Web资源名就是URI:统一资源标识符(Uniform Resource Identifier)&n
2020-06-02 15:38:50 220
原创 ace_file_input回显地址图片
最近写前端页面,需要做一个图片上传功能,BootStrap的ace_file_input真是相当好用的一个文件上传插件了。出于体验感考虑,当然需要能够图片回显功能啦~普通情况下,ace_file_input是能回显图片的,但是对于那种地址图片发现它突然不好使了,搜罗了一大圈终于找到了解决方法,在此记录一下。同时再次感叹前端好难啊。。。还是后端简单一点。首先,要改写原生JS中的show_file_list方法,以及新增一个i_bak方法:f.prototype.show_file_list = fu
2020-06-02 14:48:45 1691
原创 蒙特卡洛算法求圆周率
遇到一个算法面试题,要求通过程序求出圆周率。作为数学渣的我,瞬间懵逼。于是翻看其他大佬们对于圆周率的计算方式,看到一个比较好理解的算法:蒙特卡洛算法。如上图,外接正方形的面积S1 = 4 * R^2;圆的面积S2 = PI * R^2。因此,一个随机点A(x,y|x∈[-1,1],y∈[-1,1]),P(落到圆里的概率) = PI / 4;因此,圆周率 PI = 4 * P(落到圆里的概率)。而当圆的半径为1时,圆上所有点到圆心的长度都不会超过1;因此设圆心为O,向量OA的模长 √(x^2
2020-05-31 19:13:09 1427
原创 tomcat本地错误日志查看(See server log for details)
今天在idea上启动Spring项目时,tomcat报错:Error during artifact deployment. See server log for details.一直没找到具体日志在哪儿,后来终于找到了查看的方式,在此记录下:...
2019-04-29 11:22:06 17928 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人