洛谷 P1003 铺地毯 解题报告(未完善)

洛谷 P1003 铺地毯 解题报告(未完善)

题目描述

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nn 张地毯,编号从 11 到 nn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

输入格式

输入共 n+2n+2 行。
第一行,一个整数 nn,表示总共有 nn 张地毯。
接下来的 nn 行中,第 i+1i+1 行表示编号 ii 的地毯的信息,包含四个正整数 a ,b ,g ,ka,b,g,k ,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a,b)(a,b) 以及地毯在 xx 轴和 yy 轴方向的长度。
第 n+2n+2 行包含两个正整数 xx 和 yy,表示所求的地面的点的坐标 (x,y)(x,y)。

输出格式
输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1。

输入输出样例

输入 #1

3
1 0 2 3
0 2 3 3
2 1 3 3
2 2

输出 #1

3

输入 #2

3
1 0 2 3
0 2 3 3
2 1 3 3
4 5

输出 #2

1
说明/提示
【样例解释1】

如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点 (2,2)(2,2) 的最上面一张地毯是 33 号地毯。

图

【数据范围】

对于 30% 的数据,有 n≤2 ;
对于 50% 的数据,0≤a,b,g,k≤100;
对于 100% 的数据,0≤n≤10^4
0≤a,b,g,k≤10

注:此题为noip2011 提高组 day1 第 11 题

对于这一道题,本蒟蒻只想说:

#include<bits/stdc++.h> 
using namespace std;
int main()
{
	for(int i=1;;i++)
	{
		cout<<"卧槽无情!!!"<<endl;
	}
	return 0;
}

这数据也太大了吧!!!(给你个眼神自己体会)
好吧,我不能慌,毕竟我是个

在这里插入图片描述

发布了2 篇原创文章 · 获赞 0 · 访问量 10
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览