【板子库(没有解释,萌新绕路)】全局第k小,权值线段树做法+离散化解决带修改问题的离线做法【待验证,不保证代码无误】

如果要看权值线段树是啥的萌新绕路,为你们节省时间,文章仅对代码进行解释.

main函数内对point数组有序,pos函数是二分查出值对应的离散化后的值(排名)。以此来对所有数都离散化处理,为存起来询问的离线做法。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <climits>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
//
using namespace std;
const int INF = 0x3f3f3f3f;//1.06e9大小
const int mod1 = 1e9 +7;
const int mod2 = 998244353;
const int mod3 = 1e9;
const double PI = acos(-1);
const double eps =1e-8;
typedef unsigned long long ull;
typedef long long ll;
typedef unsigned uint;
const int sq5=616991993;
#define ms(x, n) memset(x,n,sizeof(x))
#define debug printf("***debug***\n")
#define pii pair<int ,int>
#define X first
#define Y second
#define pb push_back
#define ls(i) i<<2
#define rs(i) i<<2|1
/*
*/
const int maxn = 5e5+100;
//离散化的点,范围:1-cnt
//cnt变量需自己定义(建议定义为局部变量)
int point[maxn];

struct node
{
	int l, r;
	ll cnt;
}tree[4 * maxn];

//查找x所在的位置
int pos(int x, int cnt)
{
	return lower_bound(point+1,point+1+cnt,x)-point;
}

//建树:i=1,l=1,r=cnt
void build(int i,int l,int r)
{
	tree[i].l=l;
	tree[i].r=r;
	tree[i].cnt=0;
	if(l==r)return;

	int mid=(l+r)/2;
	build(ls(i),l,mid);
	build(rs(i),mid+1,r);
}

//单点修改:加入cnt个x,传参:i=1,p=pos(x,n)
void update(int i, int cnt, int p)
{
	if (tree[i].l == tree[i].r)
	{
		tree[i].cnt+=cnt;
		return;
	}

	int mid = tree[ls(i)].r;
	if(p<=mid)update(ls(i),cnt,p);
	else update(rs(i),cnt,p);

	tree[i].cnt = tree[ls(i)].cnt + tree[rs(i)].cnt;
}

//查询第k小
int kth(int i, int k)
{
	if (tree[i].l == tree[i].r) return point[tree[i].l];

	if (k <= tree[ls(i)].cnt) return kth(ls(i), k);
	else return kth(rs(i), k - tree[ls(i)].cnt);
}

//保存询问的数组
int op[maxn],x[maxn];//operate[i]操作指令数字   x[i]是操作待的值

int main()
{
	int q;
	scanf("%d", &q);
	//输入询问
	for (int i=1;i<=q;i++)
		{
		scanf("%d %d",&op[i],&x[i]);
		point[i]=x[i];   //把询问的值保存到point
	}

	//对询问的值进行离散化
	sort(point+1,point+1+q);
	int cnt=unique(point+1,point+1+q)-(point+1);

	//建树
	build(1, 1, cnt);

	//回答询问
	for (int i = 1; i <= q; i++)
		{
		if (op[i] == 1)
		{  //插入x[i]
			update(1, 1, pos(x[i], cnt));
		}
		if (op[i] == 2)
		{  //删除x[i]
			update(1, -1, pos(x[i], cnt));
		}
		if (op[i] == 4)
		{  //查询第x[i]小
			int ans = kth(1, x[i]);
			printf("%d\n", ans);
		}
	}

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值