YOLO v3论文详解

YOLO v3通过引入Darknet-53网络结构增强了特征提取,利用多尺度特征进行对象检测,同时将对象分类由softmax替换为logistic,提升了小物体检测的精度。文章详细介绍了网络结构、多尺度检测策略和先验框的调整,以及一些未成功的尝试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv3: An Incremental Improvement

声明:笔者翻译论文仅为学习研究,如有侵权请联系作者删除博文,谢谢
源论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf
:文字中标粗和亮色的部分为笔者认为有创新改进余地和需要注意的地方,斜体部分为笔者的一些想法,因水平所限,部分笔触可能有不实和错误之处,敬请广大读者批评指正,让我们一起进步~

YOLO V1 | YOLO V2的论文详解见:YOLO V1 | YOLO V2

源论文翻译比较好的两个博客:
https://blog.csdn.net/sinat_35907936/article/details/90447297
https://www.cnblogs.com/wj-1314/p/9744146.html

因为原论文中部分讨

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值