UVALive 7077 - Little Zu Chongzhi's Triangles(暴力)

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=5089

题目大意:给n个木棒,用这n个木棒组成多个三角形,求这些三角形面积和的最大值,如果一个三角也不能组成则输出0.00

(注意:一根木棒就可以当做一条边,刚开始就错误的以为一条边可以由很多木棒共同组成而将题想复杂了)

分析:

将这n个木棒按长度从大到小排(从小到大票排是错误的,我也不知道为什么是错的--!)然后用双重循环暴力,找三角形的三

条边,利用海伦公式求三角形的面积

海伦公式:

a, b, c 分别为三角形的三条边,s为三角形的面积

p = (a + b + c)/2

s = sqrt(p(p-a)(p-b)(p-c));

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm>

using namespace std;

const int N = 30;
int d[N];

int cmp(const void *a, const void *b)
{
    return *(int *)b - *(int *)a;
}

bool judge(int a, int b, int c)
{
    if(a + b > c && a + c > b && b + c > a)
        return true;
    return false;
}

int main()
{
    int n, i, j, a, b, c, f;
    double s, sum, p;
    while(scanf("%d", &n), n)
    {
        sum = 0;
        for(i = 0 ; i < n ; i++)
            scanf("%d", &d[i]);
        qsort(d, n, sizeof(d[0]), cmp);
        i = 0;
        while(i < n - 1)
        {
            f = 0;
            j = i + 1;
            while(j < n)
            {
                if(judge(d[i], d[j], d[j + 1]))
                {
                    a = d[i];
                    b = d[j];
                    c = d[j + 1];
                    p = 1.0 * (a + b + c) / 2;
                    s = 1.0 * sqrt(p * (p - a) * (p - b) * (p - c));
                    sum += s;
                    i += 3;
                    j = n;
                    f = 1;
                }
                else
                    j++;
            }
            if(f == 0)
                i++;
        }
        if(sum == 0)
            printf("0.00\n");
        else
            printf("%.2f\n", sum);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/qq2424260747/p/4864844.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值