python的copy和deepcopy的区别

copy和deepcopy都是创建了一个新对象,区别在于copy创建对象的子对象是原子对象的引用(简单对象新创建,复合对象相互影响),deepcopy创建对象的子对象是原子对象的拷贝(简单对象和复合对象都相当于创建了新对象,彼此不影响)。 对于python中的简单对象,赋值相当于创建了一个新对象...

2018-01-08 11:56:45

阅读数 88

评论数 0

正则表达式

1. 精确匹配 \d 一个数字 \w 一个字母或者数字 . 任意字符 * 任意个字符 + 至少一个字符 ? 0个或者1个字符 {n} n个字符 \w{6} {n,m} n-m个字符 \d{3,8...

2018-01-05 15:40:49

阅读数 61

评论数 0

【2016_ECCV】Embedding Deep Metric for Person Re-identification: A Study Against Large Variations

行人数据的特征空间分布在highly-curved manifold,很难用geodesic距离比较2个样本。manifold学习方法常采用局部范围内的欧式距离结合样本间的图形关系来近似geodesic距离。文章主要通过moderate positive mining和对马氏距离的权重限制来提高...

2017-12-08 23:45:15

阅读数 144

评论数 0

Greedy technique

利用贪心规则进行得到子问题的最优解,通过多步决策得到原问题的最优解。IntervalScheduling problem 当每门课权重不为1时:DP 当每一步的决策是从已按照结束时间排好序的课程序列里选择或者不选择最后一门课时,时间复杂度是O(nlogn)O(nlogn) ...

2017-11-16 16:33:48

阅读数 133

评论数 0

Divide-and-Conquer

分治通常是用来降低用暴力解法已经能达到多项式时间复杂度的时间复杂度,结合randomization technique是powerful。 - Divide a problem into a number of independent sub-problems - Conquer the ...

2017-11-15 15:17:46

阅读数 678

评论数 0

Algorithm introduction

基本的算法技巧 分治(Divide-and-conquer):首先从一个smallest问题出发,观察原始问题是否能分解成smaller子问题。 智能枚举(“Intelligent” Enumeration):考虑一个最优化问题,如果它的解能够被一步一步的构造出来,可以通过构造一棵partial ...

2017-11-14 16:16:48

阅读数 74

评论数 0

【2017_ICCV_DML]Smart Mining for Deep Metric Learning

为了解决DML问题得到feature embedding,目前主要用triplet model减少类内差异,增大类间差异,但是大量的训练样本会导致收敛很慢。这个问题促进了embedding的global structure发展和hard negative|positive,可是这些方法通常计算量比...

2017-11-14 15:31:07

阅读数 499

评论数 0

【2017_ICCV】Deep Metric Learning with Angular Loss

提出了Angular Loss,考虑角度关系作为相似性度量。之前的度量方法主要考虑优化相似性(ContrastIve)或者相对相似性(Triplet Loss),文中方法限制negative point of the triplet triangles之间的角度。 优点:引入尺度不变,提高了目标...

2017-11-11 16:49:34

阅读数 1785

评论数 0

【Person Re-id】A Discriminatively Learned CNN Embedding for Person Re-identification

verification model:同时输入image pairs,network预测输入图片是否为同一个人,将问题当成一个二分类来看。这样导致没有完全用到标注信息,image pairs和数据集中的其他图片的关系被忽略了。 identification model:将Person Re-id问...

2017-11-10 15:25:28

阅读数 1713

评论数 0

Triplet Loss

对于训练数据中的一个随机样本 anchor,选择与anchor为同一类的样本记为positive,选择与anchor不为同一类的样本记为negative,这3个样本构成一个Triplet(anchor, positive, negative) 对Triplet中的每一个元素进行训练得到的特征表示...

2017-11-10 14:17:47

阅读数 170

评论数 0

Contrastive Loss

在siamese network中采用的损失函数,针对paired data。 L=12N∑i=1Nyd2−(1−y)max(margin−d,0)L = \frac{1}{2N}\sum\limits_{i=1}^N yd^2-(1-y)max(margin-d, 0) 其中y为paired...

2017-10-30 18:46:46

阅读数 472

评论数 0

LOMO+XQDA(2015CVPR)

Person Re-identification by Local Maximal Occurrence Representation and Metric Learning 提出了一个特征提取方法LOMO(local maximal occurrence),主要着眼于光照和视角问题。特征提取之前...

2017-10-20 17:25:13

阅读数 3848

评论数 2

数值优化知识点

数值优化通过迭代的方式解决优化问题 凸优化问题:对于标准形式目标函数为凸函数,等式约束为线性约束;不等式约束为凹函数。 局部最优的二阶充分条件:如果函数f在x∗ x_∗ 处满足∇f(x∗ x_∗)=0并且∇2f(x)∇^2f(x)正定,则 x∗ x_∗ 为局部最优解

2017-10-20 13:53:03

阅读数 199

评论数 0

论文搜集

视频监控相关研究方向

2016-11-13 13:53:16

阅读数 263

评论数 0

java

1.成员内部类:定义了成员内部类后,必须使用外部类对象来创建内部类对象,而不能直接去 new 一个内部类对象,即:内部类 对象名 = 外部类对象.new 内部类( ); 外部类是不能直接使用内部类的成员和方法滴.如果外部类和内部类具有相同的成员变量或方法,内部类默认访问自己的成员变量或方法,如果...

2016-05-11 17:21:36

阅读数 257

评论数 0

JSP学习

1.重定向与转发的区别 Redirect 翻译成重定向, forward翻译成转发。 重定向是客户端行为,转发是服务器行为 重定向过程:客户浏览器发送http请求——》web服务器接受后发送302状态码响应及对应新的location给客户浏览器——》客户浏览器发现是302响应,则自动再发...

2016-03-23 11:09:45

阅读数 163

评论数 0

最短路算法 :Bellman-ford算法 & Dijkstra算法 & floyd算法 & SPFA算法详解&BFS

1、Bellman-Ford算法 2、Dijkstra算法(代码 以邻接矩阵为例) && Dijkstra + 优先队列的优化(也就是堆优化) 3、floyd-Warshall算法(代码 以邻接矩阵为例) 4、SPFA(代码 以前向星为例) 5、BFS 求解最短...

2016-03-12 21:38:44

阅读数 676

评论数 0

前向星

前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了. 用len[i]来记录所有以i为起点的边在数组中的存储长度. 用head...

2016-03-12 20:52:14

阅读数 192

评论数 0

深度理解链式前向星

前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了. 用len[i]来记录所有以i为起点的边在数组中的存储长度. 用head...

2016-03-12 20:50:36

阅读数 167

评论数 0

划分树求第k大数

题目地址 题目大意:n个数m个查询,查询区间[l,r]中第k大的数 解题思路:将n个数从大到小排序,大于中位数的放在左子树(或等于,放mid-l+1个数在左子树),其余放在右子树,若区间范围内在左子树上的数>=k,则查询左子树#include <bits/stdc++.h>u...

2016-03-10 21:06:22

阅读数 168

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭