Uva11464 Even Parity

本文探讨了在无法枚举所有格子状态的情况下,如何通过状压DP技术枚举矩阵的第一行状态,进而递推全图状态并判断可行性。文章提供了详细的算法实现步骤和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

枚举每个格子的状态显然是不可能的。

思考发现,矩阵第一行的状态确定以后,下面的状态都可以递推出来。

于是状压枚举第一行的状态,递推全图的状态并判定是否可行。

 

 1 /*by SilverN*/
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<list>
 8 using namespace std;
 9 int read(){
10     int x=0,f=1;char ch=getchar();
11     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
12     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
13     return x*f;
14 }
15 struct node{
16     int pre,nxt;
17 }a[1000010];
18 int link[1000010];
19 int ud[1000010];
20 int L,P;
21 void Del(int x){
22     ud[x]=0;
23     a[a[x].pre].nxt=a[x].nxt;
24     a[a[x].nxt].pre=a[x].pre;
25 }
26 int T;
27 int main(){
28     T=read();
29     int L,P,i,j;
30     for(int cas=1;cas<=T;cas++){
31         memset(link,0,sizeof link);
32         memset(ud,0,sizeof ud);
33         L=read();P=read();
34         for(i=0;i<L;i++){
35             a[i].pre=i-1;
36             a[i].nxt=i+1;
37         }
38         a[0].pre=L-1;a[L-1].nxt=0;
39         int u,v;
40         for(i=1;i<=P;i++){
41             u=read();v=read();
42             link[u]=v;link[v]=u;
43             ud[u]=1;ud[v]=-1;//???? 
44         }
45         for(i=0;i<L;i++)if(!ud[i])Del(i);
46         int hd=0;
47         while(P){
48             bool flag=1;
49             while(!ud[hd])hd++;
50             for(i=a[hd].nxt; i!=hd && flag; i=a[i].nxt){
51                 int u=i,v=a[i].nxt;
52                 if(ud[u]==ud[v] && (a[link[u]].nxt==link[v] ||
53                     a[link[v]].nxt==link[u])){
54                         Del(u);    Del(v);
55                         Del(link[u]);
56                         Del(link[v]);
57                         P-=2;
58                         flag=0;
59                     }
60                 //passing
61                 else if(link[v]==u || link[u]==v){
62                     Del(u);Del(v);
63                     P--;
64                     flag=0;
65                 }
66                 //selfloop
67             }
68             if(flag)break;
69         }
70         printf("Case #%d: ",cas);
71         if(!P)printf("YES\n");
72         else printf("NO\n");
73     }
74     return 0;
75 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/6089757.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值