HDU1565 方格取数(1)

给你一个n*n的格子的棋盘,每个格子里面有一个非负数。 
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大。

Input包括多个测试实例,每个测试实例包括一个整数n 和n*n个非负数(n<=20)Output对于每个测试实例,输出可能取得的最大的和Sample Input

3
75 15 21 
75 15 28 
34 70 5 

Sample Output

188

 

插头DP

插头DP其实挺好理解的(相比实际写代码来说),就是转移方程写起来神烦

 

因为主动不取数的决策忘了加max,WA了三次

 1 /*by SilverN*/
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<vector>
 8 using namespace std;
 9 const int mxn=100010;
10 int read(){
11     int x=0,f=1;char ch=getchar();
12     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
13     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
14     return x*f;
15 }
16 int f[2][1<<20];
17 int n;
18 int mp[21][21];
19 int main(){
20     int i,j;
21     while(scanf("%d",&n)!=EOF){
22         for(i=0;i<n;i++)
23           for(j=0;j<n;j++)
24               mp[i][j]=read();
25         int now=0,pre=1;
26         int ed=(1<<n)-1;
27         memset(f[now],-1,sizeof f[now]);
28         f[now][0]=0;
29         for(i=0;i<n;i++){
30             for(j=0;j<n;j++){
31                 swap(now,pre);
32                 memset(f[now],-1,sizeof f[now]);
33                 for(int k=0;k<=ed;k++){
34                     int x=k&(1<<(j-1));
35                     int y=k&(1<<j);
36                     f[now][k&(~(1<<j))]=max(f[now][k&(~(1<<j))],f[pre][k]);
37                     if(!j && !y)f[now][k|(1<<j)]=max(f[now][k|(1<<j)],f[pre][k]+mp[i][j]);
38                     if(j && !x && !y)f[now][k|(1<<j)]=max(f[now][k|(1<<j)],f[pre][k]+mp[i][j]);
39                     if(!j && y)f[now][k^(1<<j)]=max(f[now][k^(1<<j)],f[pre][k]);
40                     if(j && (y|x))f[now][k&(~(1<<j))]=max(f[now][k&(~(1<<j))],f[pre][k]);
41                 }
42             }
43         }
44         int ans=0;
45         for(int k=0;k<=ed;k++)ans=max(ans,f[now][k]);
46         printf("%d\n",ans);
47     }
48     return 0;
49 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/6434713.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值