Bzoj1013 [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 5233  Solved: 2736

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

 

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + 

… + (an-bn)^2 )

 

Source

 

数学问题 高斯消元

根据题意列出n+1个方程,用第n+1个消去前n个中的一元,得到一个可解的n元方程组,高斯消元求解即可。

然而迷茫的是,高斯消元中有交换某两行方程的操作,按理会影响答案的顺序,但是依然可以过

说好的“和标准输出一模一样”呢?

————————updated 2017.3

↑对高斯消元理解有误的样子。交换两行方程,只是交换了两个向量,对于当前要解的这一元根本没有影响(解到的第i个元最终还存在第i行里)

————————

 

 1 /*by SilverN*/
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 using namespace std;
 8 int n;
 9 double f[20][20];
10 void Gauss(){
11     int i,j,k;
12     for(i=0;i<n;i++){
13         int p=i;
14         for(j=i+1;j<n;j++){
15             if(f[j][i]>f[p][i])p=j;
16         }
17         if(p!=i)for(j=i;j<=n;j++)swap(f[i][j],f[p][j]);
18         for(j=i+1;j<n;j++){
19             double x=f[j][i]/f[i][i];
20             for(k=i;k<=n;k++){
21                 f[j][k]-=f[i][k]*x;
22             }
23         }
24     }
25     for(i=n-1;i>=0;i--){
26         for(int j=i+1;j<n;j++)f[i][n]-=f[j][n]*f[i][j];
27         f[i][n]/=f[i][i];
28     }
29     printf("%.3f",f[0][n]);
30     for(i=1;i<n;i++){
31         printf(" %.3f",f[i][n]);
32     }
33     return;
34 }
35 int main(){
36     int i,j;
37     scanf("%d",&n);
38     for(i=0;i<n;i++)scanf("%lf",&f[n][i]);
39     for(i=0;i<n;i++){
40         for(j=0;j<n;j++){
41             scanf("%lf",&f[i][j]);
42             f[i][n]+=f[i][j]*f[i][j]-f[n][j]*f[n][j];
43             f[i][j]=2*(f[i][j]-f[n][j]);
44         }
45     }
46     Gauss();
47     return 0;
48 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/6542112.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值