Bzoj1069 [SCOI2007]最大土地面积

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 3177  Solved: 1255

Description

  在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成
的多边形面积最大。

Input

  第1行一个正整数N,接下来N行,每行2个数x,y,表示该点的横坐标和纵坐标。

Output

  最大的多边形面积,答案精确到小数点后3位。

Sample Input

5
0 0
1 0
1 1
0 1
0.5 0.5

Sample Output

1.000

HINT

 

数据范围 n<=2000, |x|,|y|<=100000

 

Source

 

数学问题 计算几何 凸包 旋转卡壳

要找四个点围成最大面积,显然这四个点应该在凸包上。

所以先求出凸包来。

之后当然不能四重循环枚举选点。

可以枚举选其中的两个点,假装作辅助线把凸包分成两半,在两半中各自找一个面积最大的三角形,三角形顶点就是使得选中面积最大的点。

对于一条边而言,凸包上的点到这条边的距离是满足单峰性质的,所以可以开两个指针单调扫过去。

这似乎就是传说中的旋转卡壳?

 

迷之WA,(一边肝菲特狗一边)对拍半天就是找不出错。

最后静态查错试着把33行的>0改成>=0就过了

简直要气哭

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cmath>
 6 #include<queue>
 7 using namespace std;
 8 const double eps=1e-8;
 9 const int mxn=3010;
10 struct Point{
11     double x,y;
12 }a[mxn];
13 Point operator + (Point L,Point r){return (Point){L.x+r.x,L.y+r.y};}
14 Point operator - (Point L,Point r){return (Point){L.x-r.x,L.y-r.y};}
15 inline double Cross(Point a,Point b){return a.x*b.y-a.y*b.x;}
16 inline double dist(Point a,Point b){
17     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
18 }
19 int n;
20 int st[mxn],top=0;
21 int Pcmp(Point x,Point y){
22     double res=Cross(x-a[1],y-a[1]);
23     if(abs(res)<=eps)return dist(x,a[1])<dist(y,a[1]);
24     else return res>0;
25 }
26 void HAM(){
27     int p=1,i;
28     for(i=2;i<=n;i++)
29         if(a[i].x<a[p].x || (a[i].x==a[p].x && a[i].y>a[p].y)) p=i;
30     swap(a[1],a[p]);
31     sort(a+2,a+n+1,Pcmp);
32     for(i=1;i<=n;i++){
33         while(top>1 && Cross(a[i]-a[st[top-1]],a[st[top]]-a[st[top-1]])>=0)top--;
34         st[++top]=i;
35     }
36     return;
37 }
38 void solve(){
39     HAM();
40     st[top+1]=1;
41     double ans=0;
42     int hd,tl,i,j;
43     for(i=1;i<=top;i++){
44         hd=i%top+1;tl=(i+2)%top+1;
45         for(j=i+2;j<=top;j++){
46             Point tmp=a[st[j]]-a[st[i]];
47             while(tl%top+1!=i && Cross(tmp,a[st[tl+1]]-a[st[i]])>Cross(tmp,a[st[tl]]-a[st[i]]))
48                 tl=tl%top+1;
49             while(hd%top+1!=j && Cross(a[st[hd+1]]-a[st[i]],tmp)>Cross(a[st[hd]]-a[st[i]],tmp))
50                 hd=hd%top+1;
51             ans=max(ans,Cross(tmp,a[st[tl]]-a[st[i]])+Cross(a[st[hd]]-a[st[i]],tmp));
52         }
53     }
54     printf("%.3lf",ans/2);
55     return;
56 }
57 int main(){
58 //    freopen("in.txt","r",stdin);
59 //    freopen("out1.txt","w",stdout);
60     int i,j;
61     scanf("%d",&n);
62     for(i=1;i<=n;i++)
63         scanf("%lf%lf",&a[i].x,&a[i].y);
64     solve();
65     return 0;
66 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/6617577.html

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值