BZOJ2662: [BeiJing wc2012]冻结

 

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 768  Solved: 408

Description

  “我要成为魔法少女!”  
  “那么,以灵魂为代价,你希望得到什么?”
“我要将有关魔法和奇迹的一切,封印于卡片之中„„”  
  
  在这个愿望被实现以后的世界里,人们享受着魔法卡片(SpellCard,又名符
卡)带来的便捷。
 
现在,不需要立下契约也可以使用魔法了!你还不来试一试?
  比如,我们在魔法百科全书(Encyclopedia  of  Spells)里用“freeze”作为关
键字来查询,会有很多有趣的结果。
例如,我们熟知的Cirno,她的冰冻魔法当然会有对应的 SpellCard 了。 当然,
更加令人惊讶的是,居然有冻结时间的魔法,Cirno 的冻青蛙比起这些来真是小
巫见大巫了。
这说明之前的世界中有很多魔法少女曾许下控制时间的愿望,比如 Akemi
Homura、Sakuya Izayoi、„„
当然,在本题中我们并不是要来研究历史的,而是研究魔法的应用。
 
我们考虑最简单的旅行问题吧:  现在这个大陆上有 N 个城市,M 条双向的
道路。城市编号为 1~N,我们在 1 号城市,需要到 N 号城市,怎样才能最快地
到达呢?
  这不就是最短路问题吗?我们都知道可以用 Dijkstra、Bellman-Ford、
Floyd-Warshall等算法来解决。
  现在,我们一共有 K 张可以使时间变慢 50%的 SpellCard,也就是说,在通
过某条路径时,我们可以选择使用一张卡片,这样,我们通过这一条道路的时间
就可以减少到原先的一半。需要注意的是:
  1. 在一条道路上最多只能使用一张 SpellCard。
  2. 使用一张SpellCard 只在一条道路上起作用。
  3. 你不必使用完所有的 SpellCard。
  
  给定以上的信息,你的任务是:求出在可以使用这不超过 K 张时间减速的
SpellCard 之情形下,从城市1 到城市N最少需要多长时间。

Input


第一行包含三个整数:N、M、K。
接下来 M 行,每行包含三个整数:Ai、Bi、Timei,表示存在一条 Ai与 Bi之
间的双向道路,在不使用 SpellCard 之前提下,通过它需要 Timei的时间。

Output

输出一个整数,表示从1 号城市到 N号城市的最小用时。

Sample Input

4 4 1
1 2 4
4 2 6
1 3 8
3 4 8

Sample Output

7
【样例1 解释】
在不使用 SpellCard 时,最短路为 1à2à4,总时间为 10。现在我们可
以使用 1 次 SpellCard,那么我们将通过 2à4 这条道路的时间减半,此时总
时间为7。

HINT

对于100%的数据:1  ≤  K  ≤  N ≤  50,M  ≤  1000。

  1≤  Ai,Bi ≤  N,2 ≤  Timei  ≤  2000。

为保证答案为整数,保证所有的 Timei均为偶数。

所有数据中的无向图保证无自环、重边,且是连通的。   

 

出题人目测是东方厨233

 

把普通最短路的距离数组扩展一维,f[i][j]表示到i点,用j张卡的最短距离,跑一遍dijsktra就可以了

这种问题好像学名叫多层图?

 

 1 /**/
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cmath>
 5 #include<cstring>
 6 #include<algorithm>
 7 using namespace std;
 8 const int mxn=60;
 9 int n,m,k;
10 struct edge{
11     int u,v,dis;
12     int next;
13 }e[10000];
14 int hd[mxn],cnt;
15 int dis[mxn][mxn];//去城市[i],用[j]张卡的最短距离 
16 int vis[mxn][mxn];
17 void add_edge(int x,int y,int dis){
18     e[++cnt].next=hd[x];e[cnt].u=x;e[cnt].v=y;e[cnt].dis=dis;hd[x]=cnt;
19     e[++cnt].next=hd[y];e[cnt].u=y;e[cnt].v=x;e[cnt].dis=dis;hd[y]=cnt;
20 }
21 void dij(){
22     memset(dis,64,sizeof dis);
23     dis[1][0]=0;
24     int mark1,mark2,mdis;
25     int i,j;
26     while(1){
27         mdis=1000000;
28         for(i=1;i<=n;i++)
29           for(j=0;j<=k;j++){
30               if(!vis[i][j] && dis[i][j]<mdis){
31                   mdis=dis[i][j];
32                   mark1=i;
33                   mark2=j;
34               }
35           }
36         if(mdis==1000000)break;
37         vis[mark1][mark2]=1;
38         for(i=hd[mark1];i;i=e[i].next){
39             int v=e[i].v;
40             dis[v][mark2]=min(dis[v][mark2],dis[mark1][mark2]+e[i].dis);//不用卡
41             dis[v][mark2+1]=min(dis[v][mark2+1],dis[mark1][mark2]+e[i].dis/2);//用卡
42         }
43     }
44     int ans=10000000;
45     for(i=0;i<=k;i++)ans=min(ans,dis[n][i]);
46     printf("%d\n",ans);
47     return;
48 }
49 int main(){
50     scanf("%d%d%d",&n,&m,&k);
51     int i,j;
52     int a,b,c;
53     for(i=1;i<=m;i++){
54         scanf("%d%d%d",&a,&b,&c);
55         add_edge(a,b,c);
56     }
57     dij();
58     return 0;
59 }

 

转载于:https://www.cnblogs.com/SilverNebula/p/5734327.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值