PE157

题意:求 1 a + 1 b = p 1 0 n \frac{1}{a} + \frac{1}{b} = \frac{p}{10^n} a1+b1=10np的正整数解 ( 1 ≤ n ≤ 9 ) (1 \leq n \leq 9) (1n9)

对原式进行变化
1 a + 1 b = p 1 0 n \frac{1}{a} + \frac{1}{b} = \frac{p}{10^n} a1+b1=10np
1 a + 1 b = p 1 0 n \frac{1}{a} + \frac{1}{b} = \frac{p}{10^n} a1+b1=10np
a b p 2 − 1 0 n p ( a + b ) = 0 abp^2-10^np(a+b)=0 abp210np(a+b)=0
a b p 2 − 1 0 n p ( a + b ) + 1 0 2 n = 1 0 2 n abp^2-10^np(a+b)+10^{2n}=10^{2n} abp210np(a+b)+102n=102n
( p a − 1 0 n ) ( p b − 1 0 n ) = 1 0 2 n (pa-10^n)(pb-10^n)=10^{2n} (pa10n)(pb10n)=102n
X = p a − 1 0 n X=pa-10^n X=pa10n, Y = p b − 1 0 n Y=pb-10^n Y=pb10n,对 1 0 2 n 10^{2n} 102n分解质因数 1 0 2 n = X ∗ Y 10^{2n}=X*Y 102n=XY
p a = 1 0 n + X , p b = 1 0 n + Y pa=10^n+X, pb=10^n+Y pa=10n+X,pb=10n+Y

我们有

{ p a = 1 0 n + X p b = 1 0 n + Y \begin{cases} pa=10^n+X \\ pb=10^n+Y \end{cases} {pa=10n+Xpb=10n+Y
1 0 n + X 10^n+X 10n+X分解质因数枚举 p p p的值,即可得到 a a a b b b的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值