数组之前缀和

前缀和是一种优化区间和查询的技术,对于一维数组,可以通过预计算得到前缀和数组,在常数时间内完成区间求和。二维数组的前缀和计算类似,通过预处理得到的前缀和矩阵能快速查询任意矩形区域的元素之和。

1.前缀和

前缀和的概念:前缀和是指数组中从开始位置到当前位置的所有位置的元素之和,它可以通过累加数组元素来计算,一般来说,我们可以使用前缀和数组在常数时间复杂度内计算任意区间的和.

注意:特别是需要频繁的计算区间和的情况,可以通过先预先计算前缀和数组,可以将时间复杂度从O(n)降到O(1)

1.一维数组前缀和
class NumArray {
    private int[] preSum;
    //构造前缀和数组
    public NumArray(int[] nums) {
      int n=nums.length;
      preSum=new int[n+1];
     for(int i=1;i<preSum.length;i++){
         preSum[i]=preSum[i-1]+nums[i-1];
     }
    }
    //查询(left,right)中的元素之和
    public int sumRange(int left, int right) {
     return preSum[right+1]-preSum[left];
    }
}

2.二维数组前缀和
class NumMatrix {
    //构造二维数组
    private int[][] preSum;
    public NumMatrix(int[][] matrix) {
     int row=matrix.length;
     int colum=matrix[0].length;
     preSum=new int[row+1][colum+1];
     for(int i=1;i<preSum.length;i++){
         for(int j=1;j<preSum[0].length;j++){
             preSum[i][j]=preSum[i-1][j]+preSum[i][j-1]+matrix[i-1][j-1]-preSum[i-1][j-1];
         }
     }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
       return preSum[row2+1][col2+1]-preSum[row1][col2+1]-preSum[row2+1][col1]+preSum[row1][col1];
    }
}

 

 

假设如果现在有一个二维数组,让你去求二维数组的前缀和怎么算?

 

我们首先要创建一个n+1长度的二维数组

 

我们在这里先要知道二维数组的面积是怎么算的

 

 

### 定义 Next数组是KMP(Knuth-Morris-Pratt)算法中的一个关键数据结构。它主要记录了模式串中每个位置之前的子串的最长公共前后缀的长度信息。例如,对于一个模式串,其每个位置对应的Next数组值反映了该位置之前的子串的前缀和后缀相同部分的最大长度。不过在不同实现中,Next数组的赋值有所差异,有的是将`next[0]`赋值为 -1,`next[1]`为 0;有的是直接从`next[0]`为 0 开始,这主要是模式串对应的公共前后缀整体前移了一位的区别 [^1]。 ### 作用 Next数组在KMP算法中起着核心作用,它能够避免在字符串匹配过程中进行不必要的回溯。当在主串和模式串匹配过程中出现不匹配的情况时,利用Next数组可以快速将模式串移动到合适的位置继续进行匹配,从而提高匹配效率。 ### 实现方法 下面以`next[0]`赋值为 -1 的实现方式为例,给出Java代码示例: ```java public class KMPNextArray { public static int[] getNext(char[] cn) { int lenn = cn.length; int[] next = new int[lenn]; // 修改长度与匹配项长度一致 next[0] = -1; int j = -1; // 前缀 int i = 0; // 后缀 while (i < lenn - 1) { // 因为0已经赋值,所以少了一位,所以lenn-1 if (j == -1 || cn[i] == cn[j]) { i++; j++; next[i] = j; } else { j = next[j]; } } return next; } public static void main(String[] args) { String pattern = "ABCDABD"; char[] cn = pattern.toCharArray(); int[] next = getNext(cn); for (int value : next) { System.out.print(value + " "); } } } ``` 在上述代码中,通过一个`while`循环来构建Next数组。在循环中,使用两个指针`i`和`j`分别表示后缀和前缀的位置。当`cn[i]`和`cn[j]`相等或者`j`为 -1 时,`i`和`j`同时后移,并将`j`的值赋给`next[i]`;当不相等时,`j`回溯到`next[j]`的位置继续比较。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃橘子的Crow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值