对抗样本
文章平均质量分 82
双人-工作室
这个作者很懒,什么都没留下…
展开
-
对抗样本的防御
对抗样本的防御最近做的一次汇报,荣幸受到了某位院士的点评指导,整理一下。一、研究背景首先通俗地去看神经网络对图像进行分类预测,实质就是在训练过程中使网络权重参数拟合训练集的样本分布。对抗样本的概念其实很好理解,就是让模型识别出错,在图片域上的攻击不管你是什么样的算法,其实都是改变了图像的像素值;在物理域上的攻击无非就是添加了一些扰动,像下图中在路牌上贴一些贴纸来进行干扰,这是在目标检测中的应用(前几天跟华为16级的博士聊了几句,目标检测的安全未来会急缺打工人)正是存在着这样的一些漏洞,才有去做防原创 2021-01-25 20:16:36 · 4317 阅读 · 1 评论 -
2020-10-25
使用生成对抗网络来生成对抗样本最近要讲一下使用对抗网络来生成对抗样本的一篇paper,做了一下PPT,顺便写博客分享一下。一、研究背景近几年,人工智能与深度学习发展的很火热,尤其是在计算机视觉领域,被应用到很多场景当中,比如,图像识别、人脸识别、自动驾驶等,深度模型看起来无所不能,很强大,但是有研究发现,深度模型并没有那么强大,相反很脆弱,比如在图像识别上,只需要在一张图片上添加一点微小的扰动,就可以模型识别错误。人眼很容易识别出来图片没有发生较大的变化,但是模型很敏感,这种图像称为对抗样本。再原创 2020-10-25 19:11:01 · 345 阅读 · 0 评论