053基于深度学习的混凝土裂缝检测

本文介绍了基于深度学习的混凝土裂缝检测方法,通过运行01makeTxt.py、02train.py、03detector_photo.py和04pyqt界面.py四个代码文件,实现了图像识别和可视化界面。文章科普了卷积神经网络(CNN)的基本原理,如AlexNet、GoogleNet、VGG、RESNET和MobileNet等,并阐述了它们在计算机视觉领域的应用和贡献。最后,提到了Swin Transformer这一新兴的视觉感知模型,它解决了Transformer在处理图像时的计算和内存开销问题。
摘要由CSDN通过智能技术生成

视频演示找053期:

到此一游7758258的个人空间_哔哩哔哩_bilibili

效果展示图如下:

代码文件展示如下:

​运行01makeTxt.py可以读取图片路径保存再txt文本中,

运行02train.py可以对txt文本中的图片路径读取并训练模型,

运行03detector_photo.py可以对单张图片进行识别,

运行04pyqt界面.py可以生成一个可视化的界面,通过点击加载感兴趣的图识别。

科普下卷积神经网络相

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值