我最近在波鸿鲁尔大学开始了机器学习的博士学位研究。 我加入的小组的主要研究主题之一是慢特征分析(SFA)。 要学习一个新主题,我喜欢看示例和直观的解释,如果可能的话,让自己沉浸在数学上的严谨中。 我为其他喜欢以类似方式接触学科的人写了这篇博客文章,因为我认为SFA既强大又有趣。
在本文中,我将以一个应用SFA的代码示例为指导,以帮助激发该方法。 然后,我将详细介绍该方法背后的数学原理,最后提供指向该材料上其他良好资源的链接。
1.确定一个平滑的潜在变量
SFA是一种无监督的学习方法,可以从时间序列中提取最平滑(最慢)的基础功能或特征 。 这可以用于降维,回归和分类。 例如,我们可以有一个高度不稳定的级数,该级数由更好的行为潜变量确定。
让我们开始生成时间序列D和S:

这称为后勤图。 通过绘制序列S ,我们可以检查其混沌性质。 驱动上面曲线的行为的基本时间序列D简单得多:

我们如何从不稳定的时间序列中确定简单的基础驱动力?
我们可以使用SFA来确定功能最缓慢变化的功能。 在我们的情况下,我们将以S之类的数据开始,以D结束,而不必事先知道S是如何生成的。