慢特征分析算法Slow Feature Analysis

慢特征分析算法主要用于从视频中识别动作,通过寻找输入信号的慢变化特征。算法核心是找到一组映射函数,使得输出信号变化缓慢,同时满足特定约束条件。线性情况下,问题转化为求解广义特征值;非线性场景下,通过非线性扩展和解决广义特征值问题得到慢特征函数。该文主要解析了慢特征分析在动作识别中的核心步骤和方法。
摘要由CSDN通过智能技术生成

[Github-blog](https://xftony.github.io)      
[CSDN-blog](https://blog.csdn.net/xftony) 

      在动作视频中,运动区域像素发生剧烈的变化,但是在完成一套动作前,其动作代表的含义是不变的,即其视频表达的高层语义未发生变化。慢特征分析算法,通过剧烈变化的像素寻找其内含的高层语义信息,计算相应的特征来表征其高层语义信息,用以识别。视频中的动作识别大致可分为视频预处理、特征兴趣点提取、输入视频信息整理、慢特征分析、特征描述、特征分类。本文主要解析其中核心算法 慢特征分析部分。

      将I维输入信号记作:X ( t )= [ x1 ( t ), x2( t ) , … , xi ( t )] T,其中t属于( t0 , t1 )。慢特征分析算法的目的是要寻找一组映射函数:G( x ) = [ g1( x ),g2( x ) , … , gj( x ) ] T ,使得输出信号:Y( t ) = [ y1( t ) , y2( t ), … , yj( t ) ]T在时间维度上缓慢变化。其中:yj( t ) = gj( x( t ))。其中g1( x ) , g2( x ) , …. ,gj( x ) 即为所求的慢特征函数。

慢特征分析算法的核心就是寻找一组映射函数使得输入信号经过变换后得到的输出信号变化缓慢。输出信号变化缓慢用数学公式表达即为:Δj = Δ(yj)= < y(。)j2 > t 最小,其中 j属于{ 1,…࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值