[Github-blog](https://xftony.github.io)
[CSDN-blog](https://blog.csdn.net/xftony)
在动作视频中,运动区域像素发生剧烈的变化,但是在完成一套动作前,其动作代表的含义是不变的,即其视频表达的高层语义未发生变化。慢特征分析算法,通过剧烈变化的像素寻找其内含的高层语义信息,计算相应的特征来表征其高层语义信息,用以识别。视频中的动作识别大致可分为视频预处理、特征兴趣点提取、输入视频信息整理、慢特征分析、特征描述、特征分类。本文主要解析其中核心算法 慢特征分析部分。
将I维输入信号记作:X ( t )= [ x1 ( t ), x2( t ) , … , xi ( t )] T,其中t属于( t0 , t1 )。慢特征分析算法的目的是要寻找一组映射函数:G( x ) = [ g1( x ),g2( x ) , … , gj( x ) ] T ,使得输出信号:Y( t ) = [ y1( t ) , y2( t ), … , yj( t ) ]T在时间维度上缓慢变化。其中:yj( t ) = gj( x( t ))。其中g1( x ) , g2( x ) , …. ,gj( x ) 即为所求的慢特征函数。
慢特征分析算法的核心就是寻找一组映射函数使得输入信号经过变换后得到的输出信号变化缓慢。输出信号变化缓慢用数学公式表达即为:Δj = Δ(yj)= < y(。)j2 > t 最小,其中 j属于{ 1,…