Educational Codeforces Round 59 (Rated for Div. 2) |
---|
D. Compression
题目链接:https://codeforces.com/contest/1107/problem/D
题意:
给出一个n*(n/4)的矩阵,这个矩阵原本是一些01矩阵,但是现在四个四个储存进二进制里面,现在给出的矩阵为0~9以及A~F,表示0~15。
然后问这个矩阵能否压缩为一个(n/x)*(n/x)的矩阵,满足原矩阵中大小为x*x的子矩阵所有数都相等(所有子矩阵构成整个原矩阵)。
题解:
我想的就是暴力,但题解似乎也是暴力,但题解的做法比我的做法要优美许多。我说说我的吧...
就是先看看横排能否压缩,找出所有能够压缩的v值,然后将v从大到小进行枚举,来看看列能否照样压缩,能就直接输出答案。
大体思路就是这样,但我写的代码比较复杂...其实对于将字符解码为二进制,用个二维数组就可以了...
题解的暴力就是直接几层循环枚举完事。
下面给出我的代码...
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 5205; int n; char s[N][N]; vector <int> vec; int main(){ scanf("%d",&n); for(int i=0;i<n;i++) scanf("%s",s[i]); for(int i=1;i<=n;i++){ int flag=1; if(n%i!=0) continue ; for(int j=0;j<n;j++){ if(strcmp(s[(j/i)*i],s[j])!=0){ flag=0; break ; } } if(flag) vec.push_back(i); } reverse(vec.begin(),vec.end()); int flag; for(auto v:vec){ flag=1; for(int i=0;i<n;i+=v){ vector <int> a; for(int j=0;j<n/4;j++){ char c = s[i][j]; int now; if(c>='A' && c<='F') now=c-'A'+10; else now=c-'0'; for(int k=3;k>=0;k--){ if((1<<k)&now) a.push_back(1); else a.push_back(0); } } for(int k=0;k<n;k++){ if(a[(k/v)*v]-'0'!=a[k]-'0'){ flag=0; break ; } } if(!flag) break ; } if(flag){ cout<<v; return 0; } } return 0; }
E. Vasya and Binary String
题目链接:https://codeforces.com/contest/1107/problem/E
题意:
给出一个01串,然后对这个串进行压缩,将长度为1,2....n的相同字符进行压缩会得到相应的权值。问怎样压缩可以得到最大的值。
题解:
这题考虑dp,因为压缩只有两种情况,要么压缩一个,要么压缩多个,这个压缩多个可以连续,也可以中间有间隔。
dp(i,j,k)表示起点为i,终点为j,压缩k个和si相同的字符所得到的最大代价。
转移的话就有两种:
1.dp(i,j,1)=max{dp(i+1,j,p)}+a[1];
2.dp(i,j,k)=max{dp(i+1,pos-1,p)}+dp(pos,j,k-1)-ak-1+ak.
这里面的max我是直接枚举得到最大值,然后dp的过程中枚举pos来进行转移。
详细见代码吧:
#include <bits/stdc++.h> #define INF 0x3f3f3f3f using namespace std; typedef long long ll; const int N = 105; ll a[N]; ll dp[N][N][N]; char s[N]; int n; int main(){ scanf("%d",&n); scanf("%s",s+1); for(int i=1;i<=n;i++) cin>>a[i]; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) dp[i][i][1]=a[1]; for(int i=n-1;i>=1;i--){ for(int j=i+1;j<=n;j++){ for(int k=1;k<=j-i;k++) dp[i][j][1]=max(dp[i][j][1],dp[i+1][j][k]+a[1]); for(int q=i+1;q<=j;q++){ ll tmp=0; if(s[q]!=s[i]) continue ; for(int p=1;p<=q-i-1;p++) tmp=max(tmp,dp[i+1][q-1][p]); for(int k=2;k<=j-i+1;k++){ if(dp[q][j][k-1]) dp[i][j][k]=max(dp[i][j][k],tmp+dp[q][j][k-1]-a[k-1]+a[k]); } } } } ll ans = 0; for(int i=1;i<=n;i++) ans=max(ans,dp[1][n][i]); cout<<ans; return 0; }