概率论习题课2019/10/22 下午9:30

本文探讨了经典的Banach火柴盒问题,通过详细解析概率分布,展示了如何计算从1到n不同排序队列的概率。文章追溯了一个1998年的数学问答,揭示了解答该问题的精妙之处。

Banach Matchbox Problem

在这里插入图片描述

distribution在这里的意思实际上是概率,我最开始上课的时候打盹了,唉,没有听懂,学长给我解释的是为什么可以用他的那种方法计算。但我还是没有明白这题让我干什么,应该怎么做?我竟然就不懂装懂,真是可悲。以后绝对不能这样了。

然后我就google了一下这个著名的Banach Matchbox Problem。

发现了一个神奇的网站。数学问答网站
从这里我得到了认真仔细的解答,就是在求解一个从1-n不同排序队列的概率,令我惊讶的是这个问答竟然写于1998年!

Date: 10/31/98 at 10:43:14
From: Doctor Anthony
Subject: Re: Probability

This is a classic problem, sometimes called the Banach Matchbox
problem. Note that the least number of ‘trials’ is n+1 and the maximum
number is 2n+1.

Suppose p = the probability that he uses the lefthand pocket and
q = the probability that he uses the righthand pocket. Then:

Prob(k=n) = C(n+1,n+1)p^(n+1) q^0 + C(n+1,n+1)p^0 q^(n+1)
= p^(n+1) + q^(n+1)
= 2(1/2)^(n+1) if p = q = 1/2
= (1/2)^n

If he has used 1 match from the other box, then during the first n+1
occasions he must have chosen n matches from one box and 1 match from
the second box. Then on the n+2 nd occasion he returns to the empty
box.

The probability of this is:

Prob(k=n-1) = C(n+1,n)p^n q p + C(n+1,n)p q^n q
= 2 C(n+1,n)(1/2)^(n+2) if p = q = 1/2
= C(n+1,n)(1/2)^(n+1)
= (n+1)(1/2)^(n+1)

If he has used 2 mmatches from the other box, then during the first n+2
occasions he must have chosen n matches from one box and 2 matches from
the second box. Then on the n+3 rd occasion he returns to the empty
box.

The probability of this is:

Prob(k=n-2) = C(n+2,n)p^n q^2 p + C(n+2,n)p^2 q^n q
= 2 C(n+2,n)(1/2)^(n+3) if p = q = 1/2
= C(n+2,n)(1/2)^(n+2)

The pattern is now clear:

P(k=n-r) = C(n+r,n)(1/2)^(n+r)

So if we want the answer in terms of k we replace r by n-k in this
expression:

P(k matches in other box) = C(n+n-k,n)(1/2)^(n+n-k)
= C(2n-k,n)(1/2)^(2n-k)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值