Banach Matchbox Problem

distribution在这里的意思实际上是概率,我最开始上课的时候打盹了,唉,没有听懂,学长给我解释的是为什么可以用他的那种方法计算。但我还是没有明白这题让我干什么,应该怎么做?我竟然就不懂装懂,真是可悲。以后绝对不能这样了。
然后我就google了一下这个著名的Banach Matchbox Problem。
发现了一个神奇的网站。数学问答网站
 从这里我得到了认真仔细的解答,就是在求解一个从1-n不同排序队列的概率,令我惊讶的是这个问答竟然写于1998年!
Date: 10/31/98 at 10:43:14
From: Doctor Anthony
Subject: Re: Probability
This is a classic problem, sometimes called the Banach Matchbox
 problem. Note that the least number of ‘trials’ is n+1 and the maximum
 number is 2n+1.
Suppose p = the probability that he uses the lefthand pocket and
 q = the probability that he uses the righthand pocket. Then:
Prob(k=n) = C(n+1,n+1)p^(n+1) q^0 + C(n+1,n+1)p^0 q^(n+1)
 = p^(n+1) + q^(n+1)
 = 2(1/2)^(n+1) if p = q = 1/2
 = (1/2)^n
If he has used 1 match from the other box, then during the first n+1
 occasions he must have chosen n matches from one box and 1 match from
 the second box. Then on the n+2 nd occasion he returns to the empty
 box.
The probability of this is:
Prob(k=n-1) = C(n+1,n)p^n q p + C(n+1,n)p q^n q
 = 2 C(n+1,n)(1/2)^(n+2) if p = q = 1/2
 = C(n+1,n)(1/2)^(n+1)
 = (n+1)(1/2)^(n+1)
If he has used 2 mmatches from the other box, then during the first n+2
 occasions he must have chosen n matches from one box and 2 matches from
 the second box. Then on the n+3 rd occasion he returns to the empty
 box.
The probability of this is:
Prob(k=n-2) = C(n+2,n)p^n q^2 p + C(n+2,n)p^2 q^n q
 = 2 C(n+2,n)(1/2)^(n+3) if p = q = 1/2
 = C(n+2,n)(1/2)^(n+2)
The pattern is now clear:
P(k=n-r) = C(n+r,n)(1/2)^(n+r)
So if we want the answer in terms of k we replace r by n-k in this
 expression:
P(k matches in other box) = C(n+n-k,n)(1/2)^(n+n-k)
 = C(2n-k,n)(1/2)^(2n-k)
 
                   
                   
                   
                   
                             本文探讨了经典的Banach火柴盒问题,通过详细解析概率分布,展示了如何计算从1到n不同排序队列的概率。文章追溯了一个1998年的数学问答,揭示了解答该问题的精妙之处。
本文探讨了经典的Banach火柴盒问题,通过详细解析概率分布,展示了如何计算从1到n不同排序队列的概率。文章追溯了一个1998年的数学问答,揭示了解答该问题的精妙之处。
           
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   582
					582
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            