浏览器自动化的扫码或验证码处理

Selenium是一个浏览器器自动化的神器,能自动完成一些简单重复的浏览器工作,比如打开网址,对页面特定元素进行特定操作,截图。不过它毕竟不是人眼,不能识别图形验证码,对于扫码二维码也无能为力,不过好在这个环节人可以帮忙,当然人也不能一直在现场等着处理这个扫码和图片验证码识别的操作,所以可以将登录环节的二维码或验证码通过邮件发送给处理者,处理者及时扫码或将验证码识别后存到特定位置,由Selenium自动去获取,这样繁重的活儿让selenium去干,人只负责处理必要的登录即可,是不是感觉轻松了一些呢?
网页中图片的获取有多种方法,Selenium可以截图,不过区域是整个网页,虽然后面可以再抠图,不过没有必要,也可以找到img的src,如果是图片文件那么可以按源路径再抓文件下来,不过这个也不一定好,因为有可能脱离浏览器的http get会遇到一些麻烦,我比较推荐的一个方法是通过js处理一下,将img在canvas中重绘,保存为base64编码。
这个base64编码还有一个好处,就是直接可以作为smtp附件发出,连保存为本地文件的环节都省了。

...
with open("taskargs.json", "r", encoding='utf-8') as file:
	file_data = file.read()
args = json.loads(file_data)
...
browser.get('https://mp.weixin.qq.com/')
print("访问微信公众平台网址,请耐心等待10秒")
time.sleep(10)

js = "let c = document.createElement('canvas');let ctx = c.getContext('2d');" \
     "let img = document.getElementsByClassName('login__type__container__scan__qrcode')[0]; /*找到图片*/ " \
     "c.height=img.naturalHeight;c.width=img.naturalWidth;" \
     "ctx.drawImage(img, 0, 0,img.naturalWidth, img.naturalHeight);" \
     "let base64String = c.toDataURL();return base64String;"

base64_str = browser.execute_script(js)

message = MIMEMultipart()
message['From'] = Header("微信公众号任务", 'utf-8')
message['To'] = Header("公众平台账号管理员", 'utf-8')
message['Subject'] = Header('请扫码登录微信公众平台', 'utf-8')
message.attach(MIMEText('登录二维码图片', 'plain', 'utf-8'))

att1 = MIMEText(base64_str, 'base64', 'utf-8')
att1["Content-Type"] = 'application/octet-stream'
att1["Content-Disposition"] = 'attachment; filename="loginqrcode.png"'
message.attach(att1)

smtpObj = smtplib.SMTP(args['mailserver'], args['mailport'])
smtpObj.sendmail(args['mailsender'], args['mailreceiver'], message.as_string())
...
<think>好的,我现在需要帮助用户解决如何使用Playwright实现微信自动登录的问题。首先,我需要了解用户的需求。用户可能想要自动化微信的登录流程,可能是为了测试者批量管理账号,但需要注意微信的使用条款,避免违规操作。 接下来,我得回忆一下已有的知识。微信的网页版登录通常涉及二维码的生成、轮询检测状态以及最终的登录凭证获取。用户提供的引用中提到了使用requests库和Django模拟登录,还有使用ddddocr识别验证码。但用户现在想用Playwright,这是一个浏览器自动化工具,更适合模拟用户操作。 首先,我需要确定Playwright是否支持处理二维码描。通常,登录的过程是:访问登录页面,获取二维码图片,然后使用手机微信描,服务器确认后跳转。自动化这一步需要自动获取二维码,并模拟手机端的动作。但微信的二维码是动态的,每次生成都不同,且可能有反爬机制,比如验证码,引用[4]提到了验证码识别,可能在某些步骤需要处理。 然后,考虑如何用Playwright实现。步骤大致如下: 1. 打开微信网页版登录页面。 2. 获取二维码图片。 3. 识别二维码内容截图保存,但微信的二维码可能带有动态参数,直接识别可能无效。 4. 模拟用户后的等待和状态检测。 5. 处理可能的验证码,引用[4]中的ddddocr可以用于识别,但需要结合Playwright截图保存验证码图片。 6. 登录成功后获取cookies其他凭证。 不过,微信的二维码通常需要真实的手机,无法通过程序直接解析,因为二维码包含的是服务器生成的token,必须通过微信客户端才能与服务器同步状态。因此,完全自动化可能不可行,除非有官方API支持。用户提到的引用[2]提到需要微信app的登录信息,所以可能无法绕过手机这一步。 可能的解决方案是半自动,即使用Playwright获取二维码图片,用户手动,然后继续自动化后续步骤。者,如果有测试环境的微信账号,可以结合自动化工具,但需要注意合规性。 此外,微信网页版可能有反自动化措施,比如频繁请求检测、验证码等。引用[4]中的验证码识别可能用于处理登录后的验证步骤,但需要先处理登录。 综合这些信息,我应该建议用户使用Playwright控制浏览器获取二维码,并提示用户手动,之后自动处理后续的跳转和cookies保存。同时,注意法律和平台规定,避免封号风险。 在代实现上,可能需要以下步骤: - 使用Playwright启动浏览器,访问微信登录页面。 - 定位二维码元素,截图保存。 - 等待用户,通过轮询检查登录状态。 - 登录成功后获取cookies。 最后,需要提醒用户遵守相关规定,并指出技术可行性之外的合规问题。</think>### 分步实现微信登录的 Playwright 方案 #### 1. 环境准备 ```bash pip install playwright playwright install ``` #### 2. 核心代框架 ```python from playwright.sync_api import sync_playwright import time def wechat_login(): with sync_playwright() as p: # 启动无头浏览器 browser = p.chromium.launch(headless=False) context = browser.new_context() page = context.new_page() # 访问微信网页版登录页 page.goto("https://wx.qq.com/") # 定位二维码区域(注意动态选择器) qrcode_selector = 'img.qrcode' page.wait_for_selector(qrcode_selector) # 截图保存二维码(需用户手动) qrcode = page.query_selector(qrcode_selector) qrcode.screenshot(path="wechat_qrcode.png") print("请二维码登录 -> wechat_qrcode.png") # 轮询检测登录状态 while True: if page.url != "https://wx.qq.com/": print("登录成功!") # 获取登录后的cookies cookies = context.cookies() print("Cookies:", cookies) break time.sleep(3) context.close() browser.close() wechat_login() ``` #### 3. 关键技术点说明 1. **动态元素定位** 微信登录页的二维码选择器可能随版本更新变化,建议通过`data-testid="qrcode"`等属性定位[^2] 2. **状态检测优化** 可通过监测特定API请求判断状态: ```python page.on("request", lambda request: print(request.url) if "login?loginicon=true" in request.url else None) ``` 3. **验证码处理** 若触发验证码机制(如频繁操作),可结合OCR识别: ```python # 引用[4]的验证码识别方案 from ddddocr import DdddOcr ocr = DdddOcr(show_ad=False) captcha = page.query_selector('#captcha_img') captcha.screenshot(path='captcha.png') with open('captcha.png', 'rb') as f: code = ocr.classification(f.read()) page.fill('#captcha_input', code) ``` #### 4. 注意事项 - 需保持浏览器窗口可见(`headless=False`) - 后的登录状态通过`localStorage`保持[^3] - 遵守微信《服务协议》第8.1.2条,禁止商业化滥用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值