题目描述
给你一个食物网,你要求出这个食物网中最大食物链的数量。
(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)
Delia 非常急,所以你只有 1 秒的时间。
由于这个结果可能过大,你只需要输出总数模上 80112002的结果。
输入格式
第一行,两个正整数 n、m表示生物种类 n和吃与被吃的关系数 m。
接下来 m行,每行两个正整数,表示被吃的生物A和吃A的生物B。
输出格式
一行一个整数,为最大食物链数量模上 80112002的结果。
输入输出样例
输入 #1
5 7
1 2
1 3
2 3
3 5
2 5
4 5
3 4
输出 #1
5
说明/提示
各测试点满足以下约定:
分析
这题本质上就是求从1走到n的路径总数。
根据题目第二段所说,最低级生产者一定是入度为0的。
再看一遍题目,就是求路径数,当且仅当一个点的入度变为零时才需要入队,并不是数据更新一次就要入队;
出度为零的点的路径总数和就是答案。
明显就是拓扑排序的做法。
正确性说明:题目的补充说明告诉我们这是一张DAG(有向无环图),因此必定存在一个入度为0的点,也因此每一个点都会被遍历。
f i fi fi表示到达 i 时的路径数;
h i hi hi表示在可以直接吃掉 i 的所有关系中最后的一条的编号(邻接矩阵用);
in和out分别记录入度和出度。
不开long long见祖宗!
上代码