【gmoj3555】【7.14提高B组T1】树的直径【LCA】

本文探讨了一种处理树形结构的算法,用于计算树的直径和两点间最短路径。通过预处理节点深度和使用LCA(最近公共祖先)技术,实现了O(nlogn)的时间复杂度。代码示例展示了如何使用倍增法优化LCA查询,以及在插入节点时更新直径。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述

分析

先离线存边,建立关系,存好深度。
然后依次处理每个插入操作。保存当前直径的两端分别为s和t,设当前插入的节点为x,在s到t,s到x,t到x三条路径中找到一段最长的路径作为新的直径即可。
树上两点的最短路径长度:两点距离=两个点分别到根的距离和-两倍的lca到根的距离
求树上两点间的最短路径长度可以预处理每个点的深度,然后转化为LCA问题。求LCA可以用倍增实现。建树是O(n)的,倍增的时间复杂度为O(nlogn),因此最后总的时间复杂度为O(nlogn)。

思想上是有贪心的。

上代码

为什么这题我能调这么久¿¿¿

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int n,cnt,s,t,ans;
int dep[200010],f[200010][30],a[100010];

int lca(int x,int y) //这里的写法有一点变动
{  
	if(dep[x]<dep[y]) swap(x,y);
	int c=dep[x]-dep[y],j=25,t=1<<j;
	while(c)  //变到同一深度
	{
		  if(c>=t)
		  {
		  	 c-=t;
		  	 x=f[x][j];
		  }
		  t/=2;
		  j--;
	}
	if(x==y) return x;
	j=25;
	while(j>=0)  //同时向上,找到祖先 
	{ 
		if(f[x][j]!=f[y][j])
		{
		  	x=f[x][j];
		  	y=f[y][j];
		}
		j--;
	}
	return f[x][0];
} 
int main()
{
	scanf("%d",&n);
	cnt=4;
	f[2][0]=f[3][0]=f[4][0]=1;
	dep[2]=dep[3]=dep[4]=1;
	s=2,t=3,ans=2;//直径的一端,另一端,长度
	for(int i=1;i<=n;i++)
	{
	    scanf("%d",&a[i]);
	    f[++cnt][0]=f[++cnt][0]=a[i];  //父节点
	    dep[cnt-1]=dep[cnt]=dep[a[i]]+1;   //维护深度
	    a[i]=cnt;	   
	} 
	for(int j=1;j<=25;j++)
	{
		for(int i=1;i<=cnt;i++)
		{
			f[i][j]=f[f[i][j-1]][j-1];   //倍增预处理f数组 
		} 
    }
	for(int i=1;i<=n;i++)
	{
		int x=a[i];
		int xs=lca(x,s),xt=lca(x,t);   
		int ans1=dep[x]+dep[s]-2*dep[xs];  
	    int ans2=dep[x]+dep[t]-2*dep[xt];   
	    /*两点距离=两个点分别到根的距离和-两倍的lca到根的距离*/
	    if(ans1>ans&&ans1>=ans2)  //更新答案
	    {
	       ans=ans1;
	       t=x;//更新直径的两端点 
		}
		if(ans2>ans)
		{
		   	ans=ans2;
		   	s=x;
		}
		printf("%d\n",ans);
	}
	return 0;
}

UPD:新的LCA写法,感觉更好,模板(luoguP3379)贴上:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int n,m,s,fa[500001][30],dep[500001];
int tot,hd[500001];

struct node
{
	int to,next;
}e[1000001];

void add(int x,int y)
{
	e[++tot]=(node){y,hd[x]};
	hd[x]=tot;
}

void dfs(int x,int fx)
{
	fa[x][0]=fx;
	dep[x]=dep[fx]+1;
	for(int i=1;i<=20;i++)
	{
		fa[x][i]=fa[fa[x][i-1]][i-1];
		/*意思是now的2^i祖先等于now的2^(i-1)祖先的2^(i-1)祖先
        2^i=2^(i-1)+2^(i-1)*/
	}
	for(int i=hd[x];i>0;i=e[i].next)//防止找回他的父亲 
	{
		if(e[i].to!=fx) dfs(e[i].to,x);
	} 
} 

int lca(int x,int y)
{
	if(dep[x]<dep[y]) swap(x,y);
	for(int i=20;i>=0;i--)
	{
		if(dep[fa[x][i]]>=dep[y])
		{
			x=fa[x][i];
		}
	}
	if(x==y) return x;
	for(int i=20;i>=0;i--)
	{
		if(fa[x][i]!=fa[y][i])
		{
			x=fa[x][i];
			y=fa[y][i];
		}
	}
	return fa[x][0];//0次方就是直接父亲 
}

int main()
{
	cin>>n>>m>>s;
	for(int i=1;i<=n-1;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	dfs(s,0);
	for(int i=1;i<=m;i++)
	{
		int x,y;
		cin>>x>>y;
		cout<<lca(x,y)<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值