题目链接:比赛
分析
根据期望的和=和的期望,只需把A队每个人的期望得分减去B队每个人的期望得分即为答案。
对于A队的某人X,他的期望得分为:
∑
(
(
A
x
−
B
y
)
2
∗
P
(
A
x
,
B
y
)
)
\sum ((Ax-By)^{2}*P(Ax,By))
∑((Ax−By)2∗P(Ax,By))
其中y为B队中实力低于X的人,P代表X和Y相遇的概率
显然任意两个人相遇的概率是相等的。
排序后只需枚举一个人
i
i
i,用一个指针指着另一队中实力比i弱的里面最强的人。维护实力值的前缀和和实力值平方的前缀和(因为完全平方式可以展开,而且只用维护B的,枚举A的)即可算出期望。
显然指针只可能向右移动,所以这一步是线性的,时间复杂度不会超。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n;
ll a[60001],b[60001],s[60001],ss[60001];
int main()
{
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+b[i];
ss[i]=ss[i-1]+b[i]*b[i];
}
ll ansa=0,ansb=0;
int j=0;
for(int i=1;i<=n;i++)
{
while(a[i]>b[j]&&j<=n)
{
j++;
}
ansa+=(j-1)*a[i]*a[i]-2*a[i]*s[j-1]+ss[j-1];
ansb+=(n-j+1)*a[i]*a[i]-2*a[i]*(s[n]-s[j-1])+(ss[n]-ss[j-1]);
/*完全平方式展开(x-y)^2=x^2-2xy+y^2*/
}
double lwx;
lwx=double(ansa-ansb)/double(n);
printf("%.1f",lwx);
return 0;
}