【gmoj3055】【8.10模拟赛T3】比赛【前缀和+期望】

在这里插入图片描述
在这里插入图片描述
题目链接:比赛

分析

根据期望的和=和的期望,只需把A队每个人的期望得分减去B队每个人的期望得分即为答案。
对于A队的某人X,他的期望得分为:
∑ ( ( A x − B y ) 2 ∗ P ( A x , B y ) ) \sum ((Ax-By)^{2}*P(Ax,By)) ((AxBy)2P(Ax,By))
其中y为B队中实力低于X的人,P代表X和Y相遇的概率
显然任意两个人相遇的概率是相等的。
排序后只需枚举一个人 i i i,用一个指针指着另一队中实力比i弱的里面最强的人。维护实力值的前缀和和实力值平方的前缀和(因为完全平方式可以展开,而且只用维护B的,枚举A的)即可算出期望。
显然指针只可能向右移动,所以这一步是线性的,时间复杂度不会超。

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n;
ll a[60001],b[60001],s[60001],ss[60001];

int main()
{
	cin>>n;
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++) scanf("%d",&b[i]);
	sort(a+1,a+n+1);
	sort(b+1,b+n+1);
	for(int i=1;i<=n;i++)
	{
		s[i]=s[i-1]+b[i];
		ss[i]=ss[i-1]+b[i]*b[i];
	}
	ll ansa=0,ansb=0;
	int j=0;
	for(int i=1;i<=n;i++)
	{
		while(a[i]>b[j]&&j<=n)
		{
			j++;
		}
		ansa+=(j-1)*a[i]*a[i]-2*a[i]*s[j-1]+ss[j-1]; 
		ansb+=(n-j+1)*a[i]*a[i]-2*a[i]*(s[n]-s[j-1])+(ss[n]-ss[j-1]);
		/*完全平方式展开(x-y)^2=x^2-2xy+y^2*/
	}
	double lwx;
	lwx=double(ansa-ansb)/double(n);
	printf("%.1f",lwx);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值