分析
这题直接暴力肯定是不行的,全排列那么多。就想能不能递推或者DP。其实关键就是要找到前面与后面的关系。
对于i的排列,新加进来一个i+1,其实只有两种情况:增加了一个段或者没有增加段。从这里作为突破口。
设 f [ i ] [ j ] f[i][j] f[i][j] 为 i i i 的全排列中 j j j 上升段序列的个数。如果新加进来的没有增加段数,那就是从 f [ i − 1 ] [ j ] f[i-1][j] f[i−1][j] 过来的,如果增加段数,那就是从 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i−1][j−1] 转移过来的。
没有增加段数只能添加在每一段的段末,所以方案数就是 j ∗ f [ i − 1 ] [ j ] j*f[i-1][j] j∗f[i−1][j],增加段数的情况得放在段中,想想能放几个位置:如果有一个段,就有 i − 1 i-1 i−1个段中位置,每增加一个段都会“破坏”一个段中,所以一共有 ( i − j ) (i-j) (i−j) 个段中,特别的,可以放在数列的最前面,所以方案数就是 ( i − j + 1 ) ∗ f [ i − 1 ] [ j − 1 ] (i-j+1)*f[i-1][j-1] (i−j+1)∗f[i−1][j−1] 两种情况之和就是转移方程。
对于边界条件,显然有 f [ i ] [ 1 ] = 1 , f [ i ] [ i ] = 1 f[i][1]=1,f[i][i]=1 f[i][1]=1,f[i][i]=1,转移时需要 j < = i j<=i j<=i。
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long n,k,f[21][21];
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++) f[i][1]=1,f[i][i]=1;
for(int i=2;i<=n;i++)
{
for(int j=2;j<=i;j++)
{
f[i][j]=f[i-1][j-1]*(i-j+1)+f[i-1][j]*j;
}
}
cout<<f[n][k];
return 0;
}