【gzoj1081】k上升段【DP】

在这里插入图片描述

分析

这题直接暴力肯定是不行的,全排列那么多。就想能不能递推或者DP。其实关键就是要找到前面与后面的关系。

对于i的排列,新加进来一个i+1,其实只有两种情况:增加了一个段或者没有增加段。从这里作为突破口。

f [ i ] [ j ] f[i][j] f[i][j] i i i 的全排列中 j j j 上升段序列的个数。如果新加进来的没有增加段数,那就是从 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j] 过来的,如果增加段数,那就是从 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i1][j1] 转移过来的。

没有增加段数只能添加在每一段的段末,所以方案数就是 j ∗ f [ i − 1 ] [ j ] j*f[i-1][j] jf[i1][j],增加段数的情况得放在段中,想想能放几个位置:如果有一个段,就有 i − 1 i-1 i1个段中位置,每增加一个段都会“破坏”一个段中,所以一共有 ( i − j ) (i-j) (ij) 个段中,特别的,可以放在数列的最前面,所以方案数就是 ( i − j + 1 ) ∗ f [ i − 1 ] [ j − 1 ] (i-j+1)*f[i-1][j-1] (ij+1)f[i1][j1] 两种情况之和就是转移方程。

对于边界条件,显然有 f [ i ] [ 1 ] = 1 , f [ i ] [ i ] = 1 f[i][1]=1,f[i][i]=1 f[i][1]=1,f[i][i]=1,转移时需要 j < = i j<=i j<=i

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

long long n,k,f[21][21];

int main()
{
	cin>>n>>k;
	for(int i=1;i<=n;i++) f[i][1]=1,f[i][i]=1;
	for(int i=2;i<=n;i++)
	{
		for(int j=2;j<=i;j++)
		{
			f[i][j]=f[i-1][j-1]*(i-j+1)+f[i-1][j]*j;
		}
	}
	cout<<f[n][k];
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值