【CF1781D】Many Perfect Squares【数学】

在这里插入图片描述

题意

给定一个数列,能将该数列每个元素都加上x,其中0<=x<=1018,求操作后数列中完全平方数数量的最大值。

分析

显然,答案至少为1。

考虑怎么样让复杂度变得与n相关,因为枚举x实在是不可能,但是能不能缩小x的范围呢,也就是尝试的每一个x至少答案都是2。

那就可以假设两个数是完全平方数,然后反推出使这两个成立的x,然后再用这样答案至少为2的x去看看对于这个数组一共的数量是多少。而这样的数对也只有n2个,所以总体复杂度应该是n3.

怎么求 x x x 的值?解方程的思想

在这里插入图片描述

我们枚举因子,解其中之一就行。

验证完全平方数就不多说了,利用下取整就行。

升华

在这里插入图片描述

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;

ll tt,n,a[60],ans;

bool check(ll x)
{
	if(ll(sqrtl(x))*ll(sqrtl(x))==x) return true;
	else return false;
}

int main()
{
	cin>>tt;
	while(tt--)
	{
		ans=1;
		cin>>n;
		for(int i=1;i<=n;i++) scanf("%d",&a[i]);
		sort(a+1,a+n+1);
		for(int i=1;i<=n-1;i++)
		{
			for(int j=i+1;j<=n;j++)
			{
				ll d=a[j]-a[i];
				for(int t=1;t*t<=d;t++)
				{
					if(d%t!=0||(d/t+t)%2==1) continue;
					ll tmp=(d/t-t)/2;
					ll x=tmp*tmp-a[i];
					if(x<0) continue;
					ll tot=0;
					for(int k=1;k<=n;k++)
					{
						ll y=a[k]+x;
						if(check(y)) tot++;
					}
					ans=max(ans,tot);
				}
			}
		}
		cout<<ans<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值