题意
给定一个数列,能将该数列每个元素都加上x,其中0<=x<=1018,求操作后数列中完全平方数数量的最大值。
分析
显然,答案至少为1。
考虑怎么样让复杂度变得与n相关,因为枚举x实在是不可能,但是能不能缩小x的范围呢,也就是尝试的每一个x至少答案都是2。
那就可以假设两个数是完全平方数,然后反推出使这两个成立的x,然后再用这样答案至少为2的x去看看对于这个数组一共的数量是多少。而这样的数对也只有n2个,所以总体复杂度应该是n3.
怎么求 x x x 的值?解方程的思想
我们枚举因子,解其中之一就行。
验证完全平方数就不多说了,利用下取整就行。
升华
上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll tt,n,a[60],ans;
bool check(ll x)
{
if(ll(sqrtl(x))*ll(sqrtl(x))==x) return true;
else return false;
}
int main()
{
cin>>tt;
while(tt--)
{
ans=1;
cin>>n;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
for(int i=1;i<=n-1;i++)
{
for(int j=i+1;j<=n;j++)
{
ll d=a[j]-a[i];
for(int t=1;t*t<=d;t++)
{
if(d%t!=0||(d/t+t)%2==1) continue;
ll tmp=(d/t-t)/2;
ll x=tmp*tmp-a[i];
if(x<0) continue;
ll tot=0;
for(int k=1;k<=n;k++)
{
ll y=a[k]+x;
if(check(y)) tot++;
}
ans=max(ans,tot);
}
}
}
cout<<ans<<endl;
}
return 0;
}