分析
第一眼看上去又是 n 3 n^3 n3 枚举??不太可能。仔细一看这个答案只能是0,1,2,3。但是到这里赛时还是没分析出什么有用的性质。想到可以记录每个E前面M后面X的个数,但是个数貌似没什么用。
统计个数实际上复杂度已经达标了,考虑能不能记录多一点信息,于是就想到了正解:对于每个E把前面权值为0,1,2的M,后面权值为0,1,2的X全部记录,可以线性时间统计答案,只需要判断各种组合情况然后对于每个E暴力计算就行,要不重不漏。
上代码
开long long!!!!
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,a[200010],totm,totx;
ll m[200010][3],x[200010][3];
ll ans;
string s;
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
cin>>s;
int cnt0=0,cnt1=0,cnt2=0;
for(int i=0;i<=n-1;i++)
{
if(s[i]=='M')
{
if(a[i+1]==0) cnt0++;
else if(a[i+1]==1) cnt1++;
else if(a[i+1]==2) cnt2++;
}
else if(s[i]=='E')
{
totm++;
m[totm][0]=m[totm-1][0]+cnt0;
m[totm][1]=m[totm-1][1]+cnt1;
m[totm][2]=m[totm-1][2]+cnt2;
cnt0=cnt1=cnt2=0;
}
}
cnt0=cnt1=cnt2=0;
for(int i=n-1;i>=0;i--)
{
if(s[i]=='X')
{
if(a[i+1]==0) cnt0++;
else if(a[i+1]==1) cnt1++;
else if(a[i+1]==2) cnt2++;
}
else if(s[i]=='E')
{
totx++;
x[totx][0]=x[totx-1][0]+cnt0;
x[totx][1]=x[totx-1][1]+cnt1;
x[totx][2]=x[totx-1][2]+cnt2;
cnt0=cnt1=cnt2=0;
}
}
int now=0;
for(int i=0;i<n-1;i++)
{
if(s[i]=='E')
{
now++;//m
int lst=totm-now+1;//x
if(a[i+1]==0)
{
ans+=(m[now][0]*x[lst][0]+m[now][0]*x[lst][2]+m[now][2]*x[lst][0]+m[now][2]*x[lst][2])*1
+(m[now][1]*x[lst][0]+m[now][0]*x[lst][1]+m[now][1]*x[lst][1])*2
+(m[now][1]*x[lst][2]+m[now][2]*x[lst][1])*3;
}
else if(a[i+1]==1)
{
ans+=(m[now][0]*x[lst][0]+m[now][1]*x[lst][0]+m[now][0]*x[lst][1])*2
+(m[now][0]*x[lst][2]+m[now][2]*x[lst][0])*3;
}
else if(a[i+1]==2)
{
ans+=(m[now][0]*x[lst][0]+m[now][0]*x[lst][2]+m[now][2]*x[lst][0])*1
+(m[now][1]*x[lst][0]+m[now][0]*x[lst][1])*3;
}
}
}
cout<<ans;
return 0;
}