本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:SPOJ8222
正解:后缀自动机
解题报告:
我好菜啊,现在才学SAM…
大概的构造就是在线的增量法,看看代码还是挺好懂的,简洁明了…
有几个基础性质:自动机上的每个点上代表的字符串集合的右端点相同,$right$集合相同。
而且两个点的$right$集合要么是包含关系,要么就不相交。
每个节点的控制范围就是$(maxs_{fa},maxs_u]$,这样就不用维护自身的$mins$了,比较方便。
儿子节点的$right$集合是父状态的子集,在$parent$树上往上走相当于砍掉了一个前缀。
根据前面的性质,$|right_{fa}|= \sum {|right_u|}$,那么这道题就能做了…
自下往上搞出每个点的$right$集合大小,用集合大小去更新$maxs$的$ans$就可以了。
要用基数排序。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 500011;
int n,last,S,cnt,a[MAXN],ch[MAXN][26],len[MAXN],fa[MAXN],ans[MAXN];
int tong[MAXN],sa[MAXN],R[MAXN],f[MAXN];
char s[MAXN];
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
inline void add(int x){
int c=a[x]; int p=last,np=++cnt; last=np;
len[np]=x; for(;p && !ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=S;
else {
int q=ch[p][c];
if(len[q]==len[p]+1) fa[np]=q;
else {//不满足SAM上每个节点关于right集合的性质,拆成两个来分别接收
int nq=++cnt; len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];
fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;//把对应的走到q的边全改成走到nq
}
}
}
inline void work(){
scanf("%s",s+1); n=strlen(s+1);
S=last=++cnt; for(int i=1;i<=n;i++) a[i]=s[i]-'a';
for(int i=1;i<=n;i++) add(i);
for(int i=1,p=S;i<=n;i++) p=ch[p][a[i]],R[p]++;//主链上的right集合初值设为1
for(int i=1;i<=cnt;i++) tong[ len[i] ]++;
for(int i=1;i<=n;i++) tong[i]+=tong[i-1];
for(int i=1;i<=cnt;i++) sa[ tong[ len[i] ] -- ]=i;
for(int i=cnt;i>=1;i--) R[ fa[ sa[i] ] ]+=R[ sa[i] ];
for(int i=1;i<=cnt;i++) f[ len[i] ]=max(f[ len[i] ],R[i]);//统计每种长度子串的最大出现次数,就是用right集合去更新maxs
for(int i=n;i>=1;i--) f[i]=max(f[i+1],f[i]);
for(int i=1;i<=n;i++) printf("%d\n",f[i]);
}
int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。