本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:BZOJ4817
正解:$LCT$+线段树
解题报告:
考虑操作$1$很类似$LCT$中的$access$操作,我们可以借助$LCT$的复杂度证明,来保证用$LCT$的实现方式来完成本题的操作复杂度的正确性。
我们维护每个点到根的权值,用线段树维护$dfs$序上的区间最值查询,做之前先把$1$变成根,再$access(x)$,那么不难发现$access$的时候只有在轻重边切换(也就是染成同一颜色的操作发生)的时候才需要改颜色,相当于是把原来的儿子节点所在的子树权值$+1$,现在的$-1$,这个用线段树区间修改就好了。
有一点要注意的就是搞清楚修改的对象,需要在$LCT$上沿着左子树往下走,根据性质很容易想清楚。
操作$2$的话,画一画发现答案就是$x$的权值$+y$的权值$-2*lca$的权值$+1$,这个跟$SDOI$以前的某道线段树的题目类似。
操作$3$就直接线段树区间查询就完了。
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long LL;
const int MAXN = 200011;
const int MAXM = 200011;
int n,m,ecnt,first[MAXN],to[MAXM],nxt[MAXM],ans,deep[MAXN],dfn[MAXN],end[MAXN],f[MAXN][18],pre[MAXN],father[MAXN];
//1:access,轻重边切换的时候顺便modify一下实儿子的权值
//2:a_x+a_y-2*a_{lca(x,y)}+1
//3:直接查询
inline void link(int x,int y) { nxt[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline void build(){ for(int j=1;j<=17;j++) for(int i=1;i<=n;i++) f[i][j]=f[f[i][j-1]][j-1]; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
inline void dfs(int x,int fa){
dfn[x]=++ecnt; pre[ecnt]=x;
for(int i=first[x];i;i=nxt[i]) {
int v=to[i]; if(v==fa) continue; deep[v]=deep[x]+1;
f[v][0]=father[v]=x; dfs(v,x);
}
end[x]=ecnt;
}
inline int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y); int t=0; while((1<<t)<=deep[x]) t++; t--;
for(int i=t;i>=0;i--) if(deep[x]-(1<<i)>=deep[y]) x=f[x][i]; if(x==y) return x;
for(int i=t;i>=0;i--) if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i]; return f[x][0];
}
namespace Tree{
#define lc root<<1
#define rc root<<1|1
int maxl[MAXN*3],tag[MAXN*3];
inline void build(int root,int l,int r){
if(l==r) { maxl[root]=deep[pre[l]]; return ; }
int mid=(l+r)>>1; build(lc,l,mid); build(rc,mid+1,r);
maxl[root]=max(maxl[lc],maxl[rc]);
}
inline void pushdown(int root,int l,int r){
if(tag[root]==0 || l==r) return ;
tag[lc]+=tag[root]; tag[rc]+=tag[root];
maxl[lc]+=tag[root]; maxl[rc]+=tag[root];
tag[root]=0;
}
inline void modify(int root,int l,int r,int ql,int qr,int val){
pushdown(root,l,r);
if(ql<=l && r<=qr) { tag[root]+=val; maxl[root]+=val; return ; }
int mid=(l+r)>>1;
if(ql<=mid) modify(lc,l,mid,ql,qr,val);
if(qr>mid) modify(rc,mid+1,r,ql,qr,val);
maxl[root]=max(maxl[lc],maxl[rc]);
}
inline int query(int root,int l,int r,int ql,int qr){
pushdown(root,l,r);
if(ql<=l && r<=qr) return maxl[root];
int mid=(l+r)>>1;
if(ql>mid) return query(rc,mid+1,r,ql,qr);
else if(qr<=mid) return query(lc,l,mid,ql,qr);
else return max( query(lc,l,mid,ql,qr) , query(rc,mid+1,r,ql,qr) );
}
}
namespace LCT{
int stack[MAXN],top,tr[MAXN][2],tag[MAXN];
inline bool isroot(int x){ return (tr[father[x]][0]!=x) && (tr[father[x]][1]!=x); }
inline void pushdown(int x){
if(tag[x]==0) return ;
int l=tr[x][0],r=tr[x][1];
if(l) tag[l]^=1; if(r) tag[r]^=1;
swap(tr[x][0],tr[x][1]); tag[x]=0;
}
inline void rotate(int x){
int y,z,l,r; y=father[x]; z=father[y]; l=(tr[y][1]==x); r=l^1;
if(!isroot(y)) tr[z][(tr[z][1]==y)]=x;
father[x]=z; father[y]=x;
tr[y][l]=tr[x][r]; father[tr[x][r]]=y; tr[x][r]=y;
}
inline void splay(int x){
int y,z; top=0; stack[++top]=x;
for(int i=x;!isroot(i);i=father[i]) stack[++top]=father[i];
for(int i=top;i>=1;i--) pushdown(stack[i]);
while(!isroot(x)) {
y=father[x]; z=father[y];
if(!isroot(y)) {
if((tr[z][0]==y) ^ (tr[y][0]==x)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
inline int getL(int x){
if(!x) return 0;
while(x) {
if(tr[x][0]) x=tr[x][0];
else break;
}
return x;
}
inline void access(int x){
int last=0,pos;
while(x) {
splay(x);
pos=getL(tr[x][1]);
if(pos) Tree::modify(1,1,n,dfn[pos],end[pos],1);
tr[x][1]=last;
pos=getL(last);
if(pos) Tree::modify(1,1,n,dfn[pos],end[pos],-1);
last=x; x=father[x];
}
}
inline void move_to_root(int x){
access(x);
splay(x);
tag[x]^=1;
}
}
inline void work(){
n=getint(); m=getint(); int x,y,type,LCA;
for(int i=1;i<n;i++) { x=getint(); y=getint(); link(x,y); link(y,x); }
deep[1]=1; ecnt=0; dfs(1,0);
build();
Tree::build(1,1,n);
while(m--) {
type=getint(); x=getint();
if(type==1) {
LCT::move_to_root(1);
LCT::access(x);
}
else if(type==2) {
ans=0; y=getint();
ans+=Tree::query(1,1,n,dfn[x],dfn[x]);
ans+=Tree::query(1,1,n,dfn[y],dfn[y]);
LCA=lca(x,y);
ans-=2*Tree::query(1,1,n,dfn[LCA],dfn[LCA]);
ans++;
printf("%d\n",ans);
}
else {
ans=Tree::query(1,1,n,dfn[x],end[x]);
printf("%d\n",ans);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("paint.in","r",stdin);
freopen("paint.out","w",stdout);
#endif
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。