欧拉函数

欧拉函数:phi(n) = the number of i where gcd(i,n) = 1 and 1 <= i <= n.

解法:容斥原理。

先将 n 分解质因数,然后 phi(n) = Σphi(p_i) - Σphi(p_i * p_j) + Σphi(p_i * p_j * p_k)  - ... 。

可简化成式子 phi(n) = n * (1 - 1/pi) * (1 - 1/pj) * ... 。

在线版。

#include <stdio.h>

int euler(int n)
{
    int ret = n;
    for(int i=2;i*i<=n;i++)
    {
        if(n % i == 0)
        {
            ret = ret / i * (i - 1);
            while(n % i == 0)
                n /= i;
        }
    }
    if(n != 1)
        ret = ret / n * (n - 1);
    return ret;
}


预处理版。

#include <stdio.h>

const int N = 1e5 + 5;

int phi[N];

void pre_euler()
{
    phi[1] = 1;
    for(int i=2;i<N;i++)
    {
        if(!phi[i])
        {
            for(int j=i;j<N;j+=i)
            {
                if(!phi[j])
                    phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }
}

欧拉函数的和:phi_sum(n) = the sum of phi(i) where gcd(i,n) = 1 and 1 <= i <= n.

phi_sum(n) = n * phi(n) / 2 (n >= 2) .

phi_sum(n) = 1 (n == 1) .


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值