欧拉函数:phi(n) = the number of i where gcd(i,n) = 1 and 1 <= i <= n.
解法:容斥原理。
先将 n 分解质因数,然后 phi(n) = Σphi(p_i) - Σphi(p_i * p_j) + Σphi(p_i * p_j * p_k) - ... 。
可简化成式子 phi(n) = n * (1 - 1/pi) * (1 - 1/pj) * ... 。
在线版。
#include <stdio.h>
int euler(int n)
{
int ret = n;
for(int i=2;i*i<=n;i++)
{
if(n % i == 0)
{
ret = ret / i * (i - 1);
while(n % i == 0)
n /= i;
}
}
if(n != 1)
ret = ret / n * (n - 1);
return ret;
}
预处理版。
#include <stdio.h>
const int N = 1e5 + 5;
int phi[N];
void pre_euler()
{
phi[1] = 1;
for(int i=2;i<N;i++)
{
if(!phi[i])
{
for(int j=i;j<N;j+=i)
{
if(!phi[j])
phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
欧拉函数的和:phi_sum(n) = the sum of phi(i) where gcd(i,n) = 1 and 1 <= i <= n.
phi_sum(n) = n * phi(n) / 2 (n >= 2) .
phi_sum(n) = 1 (n == 1) .