欧拉 函数

一、欧拉函数引入

什么是互质
如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

什么是欧拉函数
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系。

计算这个值的方法叫做欧拉函数,用φ(n)表示。
例如,在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。

二、欧拉函数的定义

定义: 欧拉函数φ(n)是一个定义在正整数集上得函数,φ(n)的值等于序列0,1,2,…,n-1中与n互素的数的个数。

注:φ(1)=1(和1互质的数(小于等于1)就是1本身)。

在这里插入图片描述
在这里插入图片描述

三、欧拉函数一些公式,性质

  1. p为质数,n为大于0自然数
    φ( p)=p-1

  2. 欧拉函数是积性函数,但不是完全积性函数。
    若m,n互质
    if(m%p==0) φ(p*m) = φ(m)p
    else φ(p
    m) = φ( p)*φ(m)

    if(m&1) φ(2*m) = φ(m)
    else if(m>2) φ(m)为偶数
    φ(pm)=φ(pm)-φ(pm-1)

  3. 当且只当n可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

特别的,对于两个素数p,q, φ(pq)=(p-1)(q-1)。(RSA算法应用)

  1. 若n是质数p的k次幂,φ(n)=pk-pk-1=(p-1)pk-1,因为除了p的倍数外,其他数都跟n互质。

    φ(n)=pk-pk-1=(p-1)pk-1

5.求和

四、三种求解方法

gcd求解

int get_phi(int n){
	int res=1;
	for(int i=2;i<n;i++)
		if(__gcd(i,n)==1)
			res++;
}

O(sqrt(n))求解

int phi(int n) {
	int res=n;
	for(int i=2; i*i<=n; i++) {
		if(n%i==0) {
			res=res*(i-1)/i;
			while(n%i==0)
				n/=i;
		}
	}
	if(n>1)
		res=res*(n-1)/n;
	return res;
}

O(n)求解

void get_phi(int n){
	phi[1]=1;
	for(int i=2;i<=n;i++){
		if(!vis[i]){
			prime[cnt++]=i;
			phi[i]=i-1;//φ( p)=p-1
		}
		for(int j=0;j<cnt&&prime[j]*i<=n;j++){
			vis[prime[j]*i]=1;
			if(i%prime[j]==0){//性质if(m%p==0) φ(p*m) = φ(m)*p   else φ(p*m) = φ(p)*φ(m)
				phi[prime[j]*i]=phi[i]*prime[j];
				break;
			}
			//phi[prime[j]*i]=phi[i]*phi[prime[j]];
			phi[prime[j]*i]=phi[i]*(prime[j]-1);//phi[j]=j-1
		}
	}
}




void get_phi(int n){
	phi[1]=1;
	for(int i=2;i<=n;i++){
		if(!vis[i]){
			prime[++cnt]=i;
			phi[i]=i-1;//φ( p)=p-1
		}
		for(int j=1;j<=cnt&&prime[j]*i<=n;j++){
			vis[prime[j]*i]=1;
			if(i%prime[j]==0){//性质if(m%p==0) φ(p*m) = φ(m)*p   else φ(p*m) = φ(p)*φ(m)
				phi[prime[j]*i]=phi[i]*prime[j];
				break;
			}
			//phi[prime[j]*i]=phi[i]*phi[prime[j]];
			phi[prime[j]*i]=phi[i]*(prime[j]-1);//phi[j]=j-1
		}
	}
}

欧拉函数最全总结

欧拉函数,欧拉定理,欧拉降幂

五、 题目

一、月月给华华出题

牛客:月月给华华出题

题目描述
因为月月是个信息学高手,所以她也给华华出了一题,让他求:
∑Ni=1igcd(i,N)∑i=1Nigcd(i,N)
但是因为这个式子实在太简单了,所以月月希望华华对N=1,2,…,n各回答一次。华华一脸懵逼,所以还是决定把这个问题丢给你。

输入描述:
一个正整数n。
输出描述:
输出n行,第i行表示N=i时的答案。

题解1

题解2

Code:


const int maxn = 1e6+7;

ll phi[maxn];
bool vis[maxn];
ll prime[maxn];
ll cnt;
ll ans[maxn];

void get_phi(int n){
	phi[1]=1;
	for(int i=2;i<=n;i++){
		if(!vis[i]){
			prime[++cnt]=i;
			phi[i]=i-1;
		}
		for(int j=1;j<=cnt&&prime[j]*i<=n;j++){//若j=0;j<cnt显示浮点数错误(出现除数为0的情况)
			vis[prime[j]*i]=1;
			if(i%prime[j]==0){
				phi[prime[j]*i]=phi[i]*prime[j];
				break;
			}
			//phi[prime[j]*i]=phi[i]*phi[prime[j]];
			phi[prime[j]*i]=phi[i]*(prime[j]-1);
		}
	}
}
int main() {
	
	ll n;
	cin>>n;
	get_phi(n);
	for(int i=1;i<=n;i++){
		for(int j=i;j<=n;j+=i){
			ans[j]+=phi[i]*i/2;
		}
	}
	for(int i=1;i<=n;i++){
		cout<<ans[i]+1<<endl;
	}
	return 0;
}

二、Poj2407(套用模板,简单题)

Poj2407

简单题,直接套用模板即可


int main() {
	ll n;
	ll res=n;
	while(cin>>n&&n) {
		res=n;
		for(int i=2; i*i<=n; i++) {
			if(n%i==0) {
				res=res*(i-1)/i;
				while(n%i==0)
					n/=i;
			}
		}
		if(n>1)
			res=res*(n-1)/n;
		cout<<res<<endl;
	}
	return 0;
}

三、Poj2478(模板求和问题)

Poj2478

模板求和问题

复杂度 O(nlogn)

类似筛法求素数


const int maxn = 1e6+7;
ll euler[maxn];
ll ans[maxn];
void eulerr(){
	euler[1]=1;
	for(int i=2;i<maxn;i++)
		euler[i]=i;
	for(int i=2;i<maxn;i++){
		if(euler[i]==i){
			for(int j=i;j<maxn;j+=i){
				euler[j]=euler[j]*(i-1)/i;
			}
		}
	}
} 

int main(){
	eulerr();
	ans[1]=0;
	for(int i=2;i<maxn;i++){
		ans[i]=ans[i-1]+euler[i];
	}
	int n;
	while(cin>>n&&n){
		cout<<ans[n]<<endl;
	}
	return 0;
}
*/ 

四、Poj1248(扩展:原根)

Poj1248

这个题目实质就是问m有多少个原根

原根 百度解释

简单来说,当模m有原根时,原根的个数是φ(φ(m))
依据欧拉函数性质,φ(m) = phi[m] = m-1;
所以,答案为 phi[m-1]

Code


int get_phi(int n){
	int res=n;
	for(int i=2;i*i<=n;i++){
		if(n%i==0){
			res=res*(i-1)/i;
			while(n%i==0){
				n/=i;
			}
		}
	}
	if(n>1){
		res=res*(n-1)/n;
	}
	return res;
}

int main(){
	int n;
	while(cin>>n){
		cout<<get_phi(n-1)<<endl;
	}
	return 0;
}

五、hdu 1787 (模板题 (求不互质))

hdu1787

求1~(n-1)与n不互质的数

Code


int get_phi(int n){
	int res=n;
	for(int i=2;i*i<=n;i++){
		if(n%i==0){
			res=res*(i-1)/i;
			while(n%i==0){
				n/=i;
			}
		}
	}
	if(n>1){
		res=res*(n-1)/n;
	}
	return res;
}

int main(){
	int n;
	while(cin>>n&&n){
		cout<<n-1-get_phi(n)<<endl;//减去1和互质的个数 
	}
	return 0;
}

六、Poj 3090

Poj3090

题解

首先,题目主要是求从0,0能看到的点的个数。

先考虑只有1×1的时候,三个点,根据图明显看出,只需要计算下三角,结果=下三角的个数×2再加1(斜率为1的点)。

那么我们只需要计算斜率从0到1之间的个数就行了,不包括1,包括0.结果设为sum,那么最终就是2*sum+1.

1×1只有一个斜率为0的

2×2斜率有0,1/2(0已经算过了,以后不再算了),其实就多了一个斜率为1/2的。

3×3的时候,有1/3,2/3两个,比以前多了2个

4×4的时候,有1/4,2/4(1/2已经有过了),3/4,所以也是2个

5×5的时候,有1/5,2/5,3/5,4/5,之前都没有,所以多了4个

6×6得到时候,有1/6,2/6(1/3已经有了),3/6(1/2已经有了),4/6(2/3已经有了),5/6,所以只剩2个。

从上面可以发现一个规律,对于n×n,可以从0,0连接到(n,0)到(n,n)上,斜率将会是1/n,2/n…(n-1)/n;

凡是分子和分母能够约分的,也就是有公约数,前面都已经有过了。所以每次添加的个数就是分子和分母互质的个数。

Code


const int maxn = 1e6+7;

int phi[maxn];
void eulerr() {//套用模板
	phi[1]=1;
	for(int i=2; i<maxn; i++)
		phi[i]=i;
	for(int i=2; i<maxn; i++) {
		if(phi[i]==i) {
			for(int j=i; j<maxn; j+=i) {
				phi[j]=phi[j]*(i-1)/i;
			}
		}
	}
}

int main() {
	eulerr();
	int t;
	int n;
	cin>>t;
	for(int i=1; i<=t; i++) {
		cin>>n;
		int res=0;
		for(int j=1; j<=n; j++) {
			res+=phi[j];
		}
		res=res*2+1;
		cout<<i<<" "<<n<<" "<<res<<endl;
	}
	return 0;
}
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值